TY - JOUR
T1 - Targeted Liposomal Delivery of TLR9 Ligands Activates Spontaneous Antitumour in an Autochthonous Cancer Model
AU - Hamzah, Juliana
AU - Altin, J.G.
AU - Herringson, T.
AU - Parish, C.R.
AU - Hammerling, G.J.
AU - O'Donoghue, H.
AU - Ganss, Ruth
PY - 2009
Y1 - 2009
N2 - Accessibility of tumors for highly effective local treatment represents a major challenge for anticancer therapy. Immunostimulatory oligodeoxynucleotides (ODN) with CpG motifs are ligands of TLR9, which prime spontaneous antitumor immunity, but are less effective when applied systemically. We therefore developed a liposome-based agent for selective delivery of CpG-ODN into the tumor environment. A peptide that specifically targets angiogenic endothelial cells in a transgenic tumor model for islet cell carcinogenesis was engrafted into CpG-ODN containing liposomes. Intravenous injection of these liposomes resulted in specific accumulation around tumor vessels, increased uptake by tumor-resident macrophages, and retention over time. In contrast, nontargeted liposomes did not localize to the tumor vasculature. Consequently, only vascular targeting of CpG-ODN liposomes provoked a marked inflammatory response at vessel walls with enhanced CD8+ and CD4+ T cell infiltration and, importantly, activation of spontaneous, tumor-specific cytotoxicity. In a therapeutic setting, 40% of tumor-bearing, transgenic mice survived beyond week 45 after systemic administration of vascular-directed CpG-ODN liposomes. In contrast, control mice survived up to 30 wk. Therapeutic efficacy was further improved by increasing the frequency of tumor-specific effector cells through adoptive transfers. NK cells and CD8+ T cells were major effectors which induced tumor cell death and acted in conjunction with antivascular effects. Thus, tumor homing with CpG-ODN-loaded liposomes is as potent as direct injection of free CpG-ODN and has the potential to overcome some major limitations of conventional CpG-ODN monotherapy.
AB - Accessibility of tumors for highly effective local treatment represents a major challenge for anticancer therapy. Immunostimulatory oligodeoxynucleotides (ODN) with CpG motifs are ligands of TLR9, which prime spontaneous antitumor immunity, but are less effective when applied systemically. We therefore developed a liposome-based agent for selective delivery of CpG-ODN into the tumor environment. A peptide that specifically targets angiogenic endothelial cells in a transgenic tumor model for islet cell carcinogenesis was engrafted into CpG-ODN containing liposomes. Intravenous injection of these liposomes resulted in specific accumulation around tumor vessels, increased uptake by tumor-resident macrophages, and retention over time. In contrast, nontargeted liposomes did not localize to the tumor vasculature. Consequently, only vascular targeting of CpG-ODN liposomes provoked a marked inflammatory response at vessel walls with enhanced CD8+ and CD4+ T cell infiltration and, importantly, activation of spontaneous, tumor-specific cytotoxicity. In a therapeutic setting, 40% of tumor-bearing, transgenic mice survived beyond week 45 after systemic administration of vascular-directed CpG-ODN liposomes. In contrast, control mice survived up to 30 wk. Therapeutic efficacy was further improved by increasing the frequency of tumor-specific effector cells through adoptive transfers. NK cells and CD8+ T cells were major effectors which induced tumor cell death and acted in conjunction with antivascular effects. Thus, tumor homing with CpG-ODN-loaded liposomes is as potent as direct injection of free CpG-ODN and has the potential to overcome some major limitations of conventional CpG-ODN monotherapy.
U2 - 10.4049/jimmunol.0900736
DO - 10.4049/jimmunol.0900736
M3 - Article
C2 - 19561111
SN - 0022-1767
VL - 183
SP - 1091
EP - 1098
JO - Journal of Immunology
JF - Journal of Immunology
ER -