Projects per year
Abstract
To develop luminescent molecular materials with predictable and stimuli-responsive emission, it is necessary to correlate changes in their geometries, packing structures, and noncovalent interactions with the associated changes in their optical properties. Here, we demonstrate that high-pressure single-crystal X-ray diffraction can be combined with high-pressure UV-visible absorption and fluorescence emission spectroscopies to elucidate how subtle changes in structure influence optical outputs. A piezochromic aggregation-induced emitter, sym-heptaphenylcycloheptatriene (Ph7C7H), displays bathochromic shifts in its absorption and emission spectra at high pressure. Parallel X-ray measurements identify the pressure-induced changes in specific phenyl-phenyl interactions responsible for the piezochromism. Pairs of phenyl rings from neighboring molecules approach the geometry of a stable benzene dimer, while conformational changes alter intramolecular phenyl-phenyl interactions correlated with a relaxed excited state. This tandem crystallographic and spectroscopic analysis provides insights into how subtle structural changes relate to the photophysical properties of Ph7C7H and could be applied to a library of similar compounds to provide general structure-property relationships in fluorescent organic molecules with rotor-like geometries.
Original language | English |
---|---|
Pages (from-to) | 19780-19789 |
Number of pages | 10 |
Journal | Journal of the American Chemical Society |
Volume | 145 |
Issue number | 36 |
DOIs | |
Publication status | Published - 13 Sept 2023 |
Fingerprint
Dive into the research topics of 'Tandem High-Pressure Crystallography-Optical Spectroscopy Unpacks Noncovalent Interactions of Piezochromic Fluorescent Molecular Rotors'. Together they form a unique fingerprint.-
Anomalous Structural Response in Porous Framework Materials
Moggach, S. (Investigator 01) & Keppert, C. (Investigator 02)
ARC Australian Research Council
1/11/22 → 30/10/25
Project: Research
-
Fill it, Squeeze it, Crush it: Extreme Gas Uptake in Microporous Materials
Moggach, S. (Investigator 01)
ARC Australian Research Council
1/10/20 → 30/09/24
Project: Research