@article{7ba67c03fa1647dfbb731de1c1ea01b4,
title = "Systems pharmacology identifies an arterial wall regulatory gene network mediating coronary artery disease side effects of antiretroviral therapy",
abstract = "BACKGROUND: Antiretroviral therapy (ART) for HIV infection increases risk for coronary artery disease (CAD), presumably by causing dyslipidemia and increased atherosclerosis. We applied systems pharmacology to identify and validate specific regulatory gene networks through which ART drugs may promote CAD. METHODS: Transcriptional responses of human cell lines to 15 ART drugs retrieved from the Library of Integrated Cellular Signatures (overall 1127 experiments) were used to establish consensus ART gene/transcriptional signatures. Next, enrichments of differentially expressed genes and genegene connectivity within these ART-consensus signatures were sought in 30 regulatory gene networks associated with CAD and CAD-related phenotypes in the Stockholm Atherosclerosis Gene Expression study. RESULTS: Ten of 15 ART signatures were significantly enriched both for differential expression and connectivity in a specific atherosclerotic arterial wall regulatory gene network (AR-RGN) causal for CAD involving RNA processing genes. An atherosclerosis in vitro model of cholestryl esterloaded foam cells was then used for experimental validation. Treatments of these foam cells with ritonavir, nelfinavir, and saquinavir at least doubled cholestryl ester accumulation (P=0.02, 0.0009, and 0.02, respectively), whereas RNA silencing of the AR-RGN top key driver, PQBP1 (polyglutamine binding protein 1), significantly curbed cholestryl ester accumulation following treatment with any of these ART drugs by >37% (P<0.05). CONCLUSIONS: By applying a novel systems pharmacology data analysis framework, 3 commonly used ARTs (ritonavir, nelfinavir, and saquinavir) were found altering the activity of AR-RGN, a regulatory gene network promoting foam cell formation and risk of CAD. Targeting AR-RGN or its top key driver PQBP1 may help reduce CAD side effects of these ART drugs.",
keywords = "Antiretroviral therapy, Atherosclerosis, Highly active, HIV, Nelfinavir, Ritonavir, Saquinavir",
author = "Itziar Frades and Ben Readhead and Letizia Amadori and Simon Koplev and Talukdar, {Husain A.} and Crane, {Heidi M.} and Crane, {Paul K.} and Kovacic, {Jason C.} and Dudley, {Joel T.} and Chiara Giannarelli and Bj{\"o}rkegren, {Johan L.M.} and Inga Peter",
note = "Funding Information: This work was supported by National Institute of Health{\textquoteright}s (NIH) National Heart, Lung, and Blood Institute (NHLBI, R01HL125027 to Drs Peter and Crane). Dr Giannarelli was supported by NIH{\textquoteright}s NHLBI (K23HL111339 and R03HL135289) and National Center for Advancing Translational Sciences (R21TR001739 and UH2TR002067). Dr Kovacic acknowledges research support from the NIH{\textquoteright}s NHLBI (R01HL130423) and The Leducq Foundation (Transatlantic Network of Excellence Award). Dr Bj{\"o}rkegren acknowledges research support from the NIH's NHLBI (R01HL125863), American Heart Association (A14S-FRN20840000), Swedish Research Council (2018–02529), Heart Lung Foundation (20170265), and The Leducq Foundation 18CVD02) and CADgenomics (12CVD02). Funding Information: This work was supported by National Institute of Health's (NIH) National Heart, Lung, and Blood Institute (NHLBI, R01HL125027 to Drs Peter and Crane). Dr Giannarelli was supported by NIH's NHLBI (K23HL111339 and R03HL135289) and National Center for Advancing Translational Sciences (R21TR001739 and UH2TR002067). Dr Kovacic acknowledges research support from the NIH's NHLBI (R01HL130423) and The Leducq Foundation (Transatlantic Network of Excellence Award). Dr Bj{\"o}rkegren acknowledges research support from the NIH's NHLBI (R01HL125863), American Heart Association (A14SFRN20840000), Swedish Research Council (2018-02529), Heart Lung Foundation (20170265), and The Leducq Foundation 18CVD02) and CADgenomics (12CVD02). Publisher Copyright: {\textcopyright} 2019 American Heart Association, Inc.",
year = "2019",
month = jun,
doi = "10.1161/CIRCGEN.118.002390",
language = "English",
volume = "12",
pages = "262--272",
journal = "Circulation: Genomic and precision medicine",
issn = "2574-8300",
publisher = "Lippincott Williams & Wilkins",
number = "6",
}