Synthetic approaches towards gold (I) and silver (I) complexes of functionalised N-heterocyclic carbene ligands

James Laurence Hickey

Research output: ThesisDoctoral Thesis

126 Downloads (Pure)


This work focuses on the design and synthesis of Au(I) and Ag(I) complexes from ligand systems that aim to combine both N-heterocyclic carbene (NHC) and phosphine ligand types. A number of synthetic approaches towards both the ligands and the prepared metal complexes have been developed, with a concerted effort on achieving the desired Au(I) or Ag(I) complexes with minimal reaction steps and synthetic style. The thesis body is divided into two main sections. The first section addresses the preparation of suitable ligand precursors of potential Au(I) and Ag(I) complexes in the form of halo- and phosphino-functionalised imidazolium salts. Several series of haloalkylimidazolium salts were prepared that encompass a range of halogens (Cl, Br, I), alkyl substituents (Me, i-Pr, t-Bu, n-Bu), differing alkyl linker length (n = 0-3), and a variety of organic spacers employed to bridge multi-imidazolium moieties. Novel bidentate and multidentate phosphinoalkylimidazolium salts were synthesised from the various haloalkylimidazolium salts, via the substitution of a halide with nucleophilic diphenylphosphide. A new approach towards rare methylene bridged phosphinomethylimidazolium salts was achieved from the reactions of halomethylimidazolium salts with diphenylphosphine. The second section investigates the preparation of Au(I) and Ag(I) complexes from the halo- and phosphino-functionalised imidazolium salts. A series of dicationic 10, 12, and 14-membered metallacyclic Ag(I) complexes were prepared from the bidentate phosphinoalkylimidazolium salts. The dinuclear Ag(I) metallacycles combine two phosphino-functionalised NHC ligands that are bridged by two coordinated Ag(I) ions in an exclusively head-to-head arrangement. A dinuclear Ag(I) metallacycle was investigated for transmetallation potential to a Au(I) complex and found to selectively transmetallate at the Ag(I) coordinated to the NHC ligands to form a bimetallic metallacycle. Unexpected phosphine oxidation of a 10-membered dinuclear Ag(I) metallacycle resulted in complex disproportionation to an isolable and rare silver(I) trimer. Metal-NHC complexes from haloalkylimidazolium salts have not been reported previously, a novel approach to the synthesis of a series of Au(I) complexes from haloalkylimidazolium salts and a respective gold source was developed and is reported herein. Different synthetic approaches towards Au(I) complexes with the phosphinoalkylimidazolium salts explored a variety of ways to generate the NHC from an imidazolium in the presence of the phosphine. A one-pot, high yielding synthesis of a dinuclear Au(I) complex from PPh3 was also devised, with controlled assembly of the complex resulting in a similar head-to-head ligand arrangement to the dinuclear Ag(I) metallacycles. As an aside, a family of mononuclear [Au(R2NHC)2]+ complexes (R = Me, i-Pr, t- Bu, n-Bu, Cy) prepared previously in our research group, was expanded because of the promising antimitochondrial activity shown by [Au(i-Pr2NHC)2]+. Two new [Au(R2NHC)2]+ complexes with simple alkyl chain functionality were prepared with fine-tuned lipophilicity in close proximity to that of [Au(i-Pr2NHC)2]+.
Original languageEnglish
QualificationDoctor of Philosophy
Publication statusUnpublished - 2008


Dive into the research topics of 'Synthetic approaches towards gold (I) and silver (I) complexes of functionalised N-heterocyclic carbene ligands'. Together they form a unique fingerprint.

Cite this