Sweet potato feathery mottle virus and Sweet potato virus C from East Timorese and Australian Sweetpotato: Biological and Molecular Properties, and Biosecurity Implications

Solomon Maina, Martin J. Barbetti, Owain R. Edwards, Luis de Almeida, Abel Ximenes, Roger Anthony Jones

Research output: Contribution to journalArticle

5 Citations (Scopus)

Abstract

Sweet potato feathery mottle virus (SPFMV) and Sweet potato virus C (SPVC) isolates from sweetpotato were studied to examine genetic connectivity between viruses from Australia and Southeast Asia. East Timorese samples from sweetpotato were sent to Australia on FTA cards. Shoot and tuberous root samples were collected in Australia and planted in the glasshouse, and scions were graft inoculated to Ipomoea setosa plants. Symptoms in infected sweetpotato and I. setosa plants were recorded. RNA extracts from FTA cards and I. setosa leaf samples were subjected to high-throughput sequencing (HTS). Complete genomic sequences (CS) of SPFMV and SPVC (11 each) were obtained by HTS, and coat protein (CP) genes from them were compared with others from GenBank. SPFMV sequences clustered into two major phylogroups (A and B = RC) and two minor phylogroups (EA[I] and O[II]) within A; East Timorese sequences were in EA(I) and O(II), whereas Australian sequences were in O(II) and B(RC). With SPVC, CP trees provided sufficient diversity to distinguish major phylogroups A and B and six minor phylogroups within A (I to VI); East Timorese sequences were in minor phylogroup I, whereas Australian sequences were in minor phylogroups II and VI and in major phylogroup B. With SPFMV, Aus13B grouped with East Timorese sequence TM64B within minor phylogroup O, giving nucleotide sequence identities of 97.4% (CS) and 98.3% (CP). However, the closest match with an Australian sequence was the 97.6% (CS) and 98.7% (CP) nucleotide identity between Aus13B and an Argentinian sequence. With SPVC, closest nucleotide identity matches between Australian and East Timorese sequences were 94.1% with Aus6a and TM68A (CS) and 96.3% with Aus55-4C and TM64A (CP); however neither pair member belonged to the same minor phylogroup. Also, the closest Australian match was 99.1% (CP) nucleotide identity between Aus4C and New Zealand isolate NZ4-4. These first complete genome sequences of SPFMV and SPVC from sweetpotato plantings in the Australian continent and neighboring Southeast Asia suggest at least two (SPFMV) and three (SPVC) separate introductions to Australia since agriculture commenced more than two centuries ago. These findings have major implications for both healthy stock programs and biosecurity management in relation to pathogen entry into Australia and elsewhere.
Original languageEnglish
Pages (from-to)589-599
JournalPlant Disease
Volume102
Issue number3
Early online date2018
DOIs
Publication statusPublished - Mar 2018

Fingerprint

Sweet potato feathery mottle virus
biosecurity
coat proteins
Chamaeraphis
genomics
nucleotides
South East Asia
Ipomoea
scions
sampling
signs and symptoms (plants)
Sweet potato virus C
planting
RNA
agriculture
greenhouses
nucleotide sequences
viruses
shoots
genome

Cite this

@article{dcec80ec08f845f3829e5019a8367390,
title = "Sweet potato feathery mottle virus and Sweet potato virus C from East Timorese and Australian Sweetpotato: Biological and Molecular Properties, and Biosecurity Implications",
abstract = "Sweet potato feathery mottle virus (SPFMV) and Sweet potato virus C (SPVC) isolates from sweetpotato were studied to examine genetic connectivity between viruses from Australia and Southeast Asia. East Timorese samples from sweetpotato were sent to Australia on FTA cards. Shoot and tuberous root samples were collected in Australia and planted in the glasshouse, and scions were graft inoculated to Ipomoea setosa plants. Symptoms in infected sweetpotato and I. setosa plants were recorded. RNA extracts from FTA cards and I. setosa leaf samples were subjected to high-throughput sequencing (HTS). Complete genomic sequences (CS) of SPFMV and SPVC (11 each) were obtained by HTS, and coat protein (CP) genes from them were compared with others from GenBank. SPFMV sequences clustered into two major phylogroups (A and B = RC) and two minor phylogroups (EA[I] and O[II]) within A; East Timorese sequences were in EA(I) and O(II), whereas Australian sequences were in O(II) and B(RC). With SPVC, CP trees provided sufficient diversity to distinguish major phylogroups A and B and six minor phylogroups within A (I to VI); East Timorese sequences were in minor phylogroup I, whereas Australian sequences were in minor phylogroups II and VI and in major phylogroup B. With SPFMV, Aus13B grouped with East Timorese sequence TM64B within minor phylogroup O, giving nucleotide sequence identities of 97.4{\%} (CS) and 98.3{\%} (CP). However, the closest match with an Australian sequence was the 97.6{\%} (CS) and 98.7{\%} (CP) nucleotide identity between Aus13B and an Argentinian sequence. With SPVC, closest nucleotide identity matches between Australian and East Timorese sequences were 94.1{\%} with Aus6a and TM68A (CS) and 96.3{\%} with Aus55-4C and TM64A (CP); however neither pair member belonged to the same minor phylogroup. Also, the closest Australian match was 99.1{\%} (CP) nucleotide identity between Aus4C and New Zealand isolate NZ4-4. These first complete genome sequences of SPFMV and SPVC from sweetpotato plantings in the Australian continent and neighboring Southeast Asia suggest at least two (SPFMV) and three (SPVC) separate introductions to Australia since agriculture commenced more than two centuries ago. These findings have major implications for both healthy stock programs and biosecurity management in relation to pathogen entry into Australia and elsewhere.",
author = "Solomon Maina and Barbetti, {Martin J.} and Edwards, {Owain R.} and {de Almeida}, Luis and Abel Ximenes and Jones, {Roger Anthony}",
year = "2018",
month = "3",
doi = "10.1094/PDIS-08-17-1156-RE",
language = "English",
volume = "102",
pages = "589--599",
journal = "Plant Disease: an international journal of applied plant pathology",
issn = "0191-2917",
publisher = "AMER PHYTOPATHOLOGICAL SOC",
number = "3",

}

Sweet potato feathery mottle virus and Sweet potato virus C from East Timorese and Australian Sweetpotato : Biological and Molecular Properties, and Biosecurity Implications. / Maina, Solomon; Barbetti, Martin J.; Edwards, Owain R.; de Almeida, Luis; Ximenes, Abel; Jones, Roger Anthony.

In: Plant Disease, Vol. 102, No. 3, 03.2018, p. 589-599.

Research output: Contribution to journalArticle

TY - JOUR

T1 - Sweet potato feathery mottle virus and Sweet potato virus C from East Timorese and Australian Sweetpotato

T2 - Biological and Molecular Properties, and Biosecurity Implications

AU - Maina, Solomon

AU - Barbetti, Martin J.

AU - Edwards, Owain R.

AU - de Almeida, Luis

AU - Ximenes, Abel

AU - Jones, Roger Anthony

PY - 2018/3

Y1 - 2018/3

N2 - Sweet potato feathery mottle virus (SPFMV) and Sweet potato virus C (SPVC) isolates from sweetpotato were studied to examine genetic connectivity between viruses from Australia and Southeast Asia. East Timorese samples from sweetpotato were sent to Australia on FTA cards. Shoot and tuberous root samples were collected in Australia and planted in the glasshouse, and scions were graft inoculated to Ipomoea setosa plants. Symptoms in infected sweetpotato and I. setosa plants were recorded. RNA extracts from FTA cards and I. setosa leaf samples were subjected to high-throughput sequencing (HTS). Complete genomic sequences (CS) of SPFMV and SPVC (11 each) were obtained by HTS, and coat protein (CP) genes from them were compared with others from GenBank. SPFMV sequences clustered into two major phylogroups (A and B = RC) and two minor phylogroups (EA[I] and O[II]) within A; East Timorese sequences were in EA(I) and O(II), whereas Australian sequences were in O(II) and B(RC). With SPVC, CP trees provided sufficient diversity to distinguish major phylogroups A and B and six minor phylogroups within A (I to VI); East Timorese sequences were in minor phylogroup I, whereas Australian sequences were in minor phylogroups II and VI and in major phylogroup B. With SPFMV, Aus13B grouped with East Timorese sequence TM64B within minor phylogroup O, giving nucleotide sequence identities of 97.4% (CS) and 98.3% (CP). However, the closest match with an Australian sequence was the 97.6% (CS) and 98.7% (CP) nucleotide identity between Aus13B and an Argentinian sequence. With SPVC, closest nucleotide identity matches between Australian and East Timorese sequences were 94.1% with Aus6a and TM68A (CS) and 96.3% with Aus55-4C and TM64A (CP); however neither pair member belonged to the same minor phylogroup. Also, the closest Australian match was 99.1% (CP) nucleotide identity between Aus4C and New Zealand isolate NZ4-4. These first complete genome sequences of SPFMV and SPVC from sweetpotato plantings in the Australian continent and neighboring Southeast Asia suggest at least two (SPFMV) and three (SPVC) separate introductions to Australia since agriculture commenced more than two centuries ago. These findings have major implications for both healthy stock programs and biosecurity management in relation to pathogen entry into Australia and elsewhere.

AB - Sweet potato feathery mottle virus (SPFMV) and Sweet potato virus C (SPVC) isolates from sweetpotato were studied to examine genetic connectivity between viruses from Australia and Southeast Asia. East Timorese samples from sweetpotato were sent to Australia on FTA cards. Shoot and tuberous root samples were collected in Australia and planted in the glasshouse, and scions were graft inoculated to Ipomoea setosa plants. Symptoms in infected sweetpotato and I. setosa plants were recorded. RNA extracts from FTA cards and I. setosa leaf samples were subjected to high-throughput sequencing (HTS). Complete genomic sequences (CS) of SPFMV and SPVC (11 each) were obtained by HTS, and coat protein (CP) genes from them were compared with others from GenBank. SPFMV sequences clustered into two major phylogroups (A and B = RC) and two minor phylogroups (EA[I] and O[II]) within A; East Timorese sequences were in EA(I) and O(II), whereas Australian sequences were in O(II) and B(RC). With SPVC, CP trees provided sufficient diversity to distinguish major phylogroups A and B and six minor phylogroups within A (I to VI); East Timorese sequences were in minor phylogroup I, whereas Australian sequences were in minor phylogroups II and VI and in major phylogroup B. With SPFMV, Aus13B grouped with East Timorese sequence TM64B within minor phylogroup O, giving nucleotide sequence identities of 97.4% (CS) and 98.3% (CP). However, the closest match with an Australian sequence was the 97.6% (CS) and 98.7% (CP) nucleotide identity between Aus13B and an Argentinian sequence. With SPVC, closest nucleotide identity matches between Australian and East Timorese sequences were 94.1% with Aus6a and TM68A (CS) and 96.3% with Aus55-4C and TM64A (CP); however neither pair member belonged to the same minor phylogroup. Also, the closest Australian match was 99.1% (CP) nucleotide identity between Aus4C and New Zealand isolate NZ4-4. These first complete genome sequences of SPFMV and SPVC from sweetpotato plantings in the Australian continent and neighboring Southeast Asia suggest at least two (SPFMV) and three (SPVC) separate introductions to Australia since agriculture commenced more than two centuries ago. These findings have major implications for both healthy stock programs and biosecurity management in relation to pathogen entry into Australia and elsewhere.

U2 - 10.1094/PDIS-08-17-1156-RE

DO - 10.1094/PDIS-08-17-1156-RE

M3 - Article

VL - 102

SP - 589

EP - 599

JO - Plant Disease: an international journal of applied plant pathology

JF - Plant Disease: an international journal of applied plant pathology

SN - 0191-2917

IS - 3

ER -