TY - UNPB
T1 - Supervised Radio Frequency Interference Detection with SNNs.
AU - Pritchard, Nicholas J.
AU - Wicenec, Andreas
AU - Bennamoun, Mohammed
AU - Dodson, Richard
N1 - DBLP License: DBLP's bibliographic metadata records provided through http://dblp.org/ are distributed under a Creative Commons CC0 1.0 Universal Public Domain Dedication. Although the bibliographic metadata records are provided consistent with CC0 1.0 Dedication, the content described by the metadata records is not. Content may be subject to copyright, rights of privacy, rights of publicity and other restrictions.
PY - 2024
Y1 - 2024
N2 - Radio Frequency Interference (RFI) poses a significant challenge in radio astronomy, arising from terrestrial and celestial sources, disrupting observations conducted by radio telescopes. Addressing RFI involves intricate heuristic algorithms, manual examination, and, increasingly, machine learning methods. Given the dynamic and temporal nature of radio astronomy observations, Spiking Neural Networks (SNNs) emerge as a promising approach. In this study, we cast RFI detection as a supervised multi-variate time-series segmentation problem. Notably, our investigation explores the encoding of radio astronomy visibility data for SNN inference, considering six encoding schemes: rate, latency, delta-modulation, and three variations of the step-forward algorithm. We train a small two-layer fully connected SNN on simulated data derived from the Hydrogen Epoch of Reionization Array (HERA) telescope and perform extensive hyper-parameter optimization. Results reveal that latency encoding exhibits superior performance, achieving a per-pixel accuracy of 98.8% and an f1-score of 0.761. Remarkably, these metrics approach those of contemporary RFI detection algorithms, notwithstanding the simplicity and compactness of our proposed network architecture. This study underscores the potential of RFI detection as a benchmark problem for SNN researchers, emphasizing the efficacy of SNNs in addressing complex time-series segmentation tasks in radio astronomy.
AB - Radio Frequency Interference (RFI) poses a significant challenge in radio astronomy, arising from terrestrial and celestial sources, disrupting observations conducted by radio telescopes. Addressing RFI involves intricate heuristic algorithms, manual examination, and, increasingly, machine learning methods. Given the dynamic and temporal nature of radio astronomy observations, Spiking Neural Networks (SNNs) emerge as a promising approach. In this study, we cast RFI detection as a supervised multi-variate time-series segmentation problem. Notably, our investigation explores the encoding of radio astronomy visibility data for SNN inference, considering six encoding schemes: rate, latency, delta-modulation, and three variations of the step-forward algorithm. We train a small two-layer fully connected SNN on simulated data derived from the Hydrogen Epoch of Reionization Array (HERA) telescope and perform extensive hyper-parameter optimization. Results reveal that latency encoding exhibits superior performance, achieving a per-pixel accuracy of 98.8% and an f1-score of 0.761. Remarkably, these metrics approach those of contemporary RFI detection algorithms, notwithstanding the simplicity and compactness of our proposed network architecture. This study underscores the potential of RFI detection as a benchmark problem for SNN researchers, emphasizing the efficacy of SNNs in addressing complex time-series segmentation tasks in radio astronomy.
U2 - 10.48550/arXiv.2406.06075
DO - 10.48550/arXiv.2406.06075
M3 - Preprint
BT - Supervised Radio Frequency Interference Detection with SNNs.
PB - arXiv
ER -