Abstract
Bloodstream infections are a significant cause of morbidity and mortality around the world. Identification of bacteria in the blood using blood cultures is the preferred method of laboratory testing. In the clinical setting, many blood cultures are requested, which results in a low positive yield. With the significant damage to patients and the rise of antimicrobial resistance, it is critical that new methods are utilised to identify the presence of pathogenic organisms in the blood. This thesis explores the use of machine learning to predict positive blood culture results from routinely collected blood tests.
Original language | English |
---|---|
Qualification | Masters |
Awarding Institution |
|
Supervisors/Advisors |
|
Thesis sponsors | |
Award date | 3 Sept 2021 |
DOIs | |
Publication status | Unpublished - 2021 |