@inproceedings{113897ccac884d9f968ea4002e2fd3fb,

title = "Supersymmetric Spacetimes from Curved Superspace",

abstract = "We review the superspace technique to determine supersymmetric spacetimes in the framework of off-shell formulations for supergravity in diverse dimensions using the case of 3D N = 2 supergravity theories as an illustrative example. This geometric formalism has several advantages over other approaches advocated in the last four years. Firstly, the infinitesimal isometry transformations of a given curved superspace form, by construction, a finite-dimensional Lie superalgebra, with its odd part corresponding to the rigid supersymmetry transformations. Secondly, the generalised Killing spinor equation, which must be obeyed by the supersymmetry parameters, is a consequence of the more fundamental superfield Killing equation. Thirdly, general rigid supersymmetric theories on a curved spacetime are readily constructed in superspace by making use of the known off-shell supergravity-matter couplings and restricting them to the background chosen. It is the superspace techniques which make it possible to generate arbitrary off-shell supergravity-matter couplings. Fourthly, all maximally supersymmetric Lorentzian spaces correspond to those off-shell supergravity backgrounds for which the Grassmann-odd components of the superspace torsion and curvature tensors vanish, while the Grassmann-even components of these tensors are annihilated by the spinor derivatives.",

author = "Kuzenko, {Sergei M.}",

year = "2015",

month = aug,

doi = "10.22323/1.231.0140",

language = "English",

series = "Proceedings of Science",

publisher = "Proceedings of Science",

booktitle = "Proceedings of the Corfu Summer Institute 2014",

}