Sulfophosphate glass doped with Er3+ and TiO2 nanoparticles: Thermo-optical characterization by photothermal spectroscopy

Zeinab Ebrahimpour, Humberto Cabrera, Fahimeh Ahmadi, Asghar Asgari, Joseph Niemela

Research output: Contribution to journalArticlepeer-review

Abstract

In this work, time-resolved thermal lens and beam deflection methods were applied to determine the thermo-optical properties of Er3+ doped sulfophosphate glass in which different concentrations of Titanium dioxide (TiO2) nanoparticles (NPs) were embedded. Thermal diffusivity (D), thermal conductivity (κ), and the temperature coefficient of the optical path length (ds/dT) were determined as a function of NPs concentrations. Moreover, the growth of TiO2 NPs inside the amorphous glass matrix was evidenced by Transmission Electron Microscopy (TEM) images as well as through optical effects such as refractive index change of the glass. The outcomes indicated relatively high values for D and κ as well as a low ds/dT as required for most optical components used for laser media. The addition of TiO2 NPs with concentration of dopants up to 0.6 mol% improved the optical properties of the glass samples but did not affect its thermal properties. The results indicate that the enhanced optical and thermal performance of the proposed co-doped glass fits the quality standards for materials used in photonic devices.

Original languageEnglish
Article number115
JournalPhotonics
Volume8
Issue number4
DOIs
Publication statusPublished - Apr 2021

Fingerprint

Dive into the research topics of 'Sulfophosphate glass doped with Er<sup>3+</sup> and TiO<sub>2</sub> nanoparticles: Thermo-optical characterization by photothermal spectroscopy'. Together they form a unique fingerprint.

Cite this