TY - JOUR
T1 - Structure sensitivity of selective catalytic reduction of NO with propylene over Cu-doped Ti0.5Zr0.5O2-δ catalysts
AU - Liu, J.
AU - Zhao, Q
AU - Li, X.
AU - Chen, J.
AU - Zhang, Dongke
PY - 2015
Y1 - 2015
N2 - © 2014 Elsevier B.V. The structure sensitivity of selective catalytic reduction (SCR) of NO with propylene over Cu-doped Ti0.5Zr0.5O2-δ catalysts was investigated systematically in a series of characterizations and in situ DRIFT spectroscopy. A Cu-doped Ti0.5Zr0.5O2-δ catalyst with a hierarchical structure was fabricated successfully using a hydrothermal method (Hy-Sample), and shown to exhibit excellent SCR performance with high reaction rate and turnover frequency (TOF). The physico-chemical properties, mass transfer, and SCR activity of the catalyst depended on the preparation method. Another sample of Cu-doped Ti0.5Zr0.5O2-δ catalyst prepared using a co-precipitation method (Co-Sample) exhibited a disordered, irregular morphology, whose SCR activity, as determined in a fixed bed reactor, was significantly lower than that of Hy-Sample. In comparison, Hy-Sample possessed an enhanced redox property, and its highly ordered morphology greatly promoted the generation of active sites, including the fine-dispersed CuO species and surface adsorbed oxygen. Consequently, NO and C3H6 were readily adsorbed and activated over Hy-Sample and induced the formation of important intermediates with high reactivity, such as isocyanate (-NCO) and cyanide (-CN) species. However, the activation capacity of Co-Sample toward reactants was very weak, and the sequential deficiency of N-containing organics could be the primary reason for the poor SCR activity of Co-Sample.
AB - © 2014 Elsevier B.V. The structure sensitivity of selective catalytic reduction (SCR) of NO with propylene over Cu-doped Ti0.5Zr0.5O2-δ catalysts was investigated systematically in a series of characterizations and in situ DRIFT spectroscopy. A Cu-doped Ti0.5Zr0.5O2-δ catalyst with a hierarchical structure was fabricated successfully using a hydrothermal method (Hy-Sample), and shown to exhibit excellent SCR performance with high reaction rate and turnover frequency (TOF). The physico-chemical properties, mass transfer, and SCR activity of the catalyst depended on the preparation method. Another sample of Cu-doped Ti0.5Zr0.5O2-δ catalyst prepared using a co-precipitation method (Co-Sample) exhibited a disordered, irregular morphology, whose SCR activity, as determined in a fixed bed reactor, was significantly lower than that of Hy-Sample. In comparison, Hy-Sample possessed an enhanced redox property, and its highly ordered morphology greatly promoted the generation of active sites, including the fine-dispersed CuO species and surface adsorbed oxygen. Consequently, NO and C3H6 were readily adsorbed and activated over Hy-Sample and induced the formation of important intermediates with high reactivity, such as isocyanate (-NCO) and cyanide (-CN) species. However, the activation capacity of Co-Sample toward reactants was very weak, and the sequential deficiency of N-containing organics could be the primary reason for the poor SCR activity of Co-Sample.
U2 - 10.1016/j.apcatb.2014.10.038
DO - 10.1016/j.apcatb.2014.10.038
M3 - Article
SN - 0926-3373
VL - 165
SP - 519
EP - 528
JO - Applied Catalysis B: Environmental
JF - Applied Catalysis B: Environmental
ER -