Structural Systematics of Lanthanide(iii) Picrate Solvates: Hexamethylphosphoramide and Octamethylpyrophosphoramide Adducts

Eric J. Chan, Jack M. Harrowfield, Brian W. Skelton, Alexandre N. Sobolev, Allan H. White

Research output: Contribution to journalArticle

2 Citations (Scopus)

Abstract

Crystalline products of the reactions of lanthanide picrates, Ln(pic)3 (pic = 2,4,6-trinitrophenoxide), with hexamethylphosphoramide (hmpa) and octamethylpyrophosphoramide (ompa) have been characterised by single-crystal X-ray diffraction studies. With hmpa and lighter lanthanides (La, Sm, Eu), isomorphous species (monoclinic, P21/c, Z 4) of stoichiometry [Ln(pic)3(hmpa)3]·0.5H2O, have been defined where the molecular units in the lattice contain 9-coordinate Ln with tricapped trigonal-prismatic coordination geometry. The picrate ligands are bidentate through phenoxide-O and 2-nitro-O, with the latter occupying the capping positions, while the hmpa ligands are singly O-bound to one trigonal face. Heavier lanthanides (Gd, Lu) and Y have been found to give isomorphous (monoclinic, P21/n, Z 4) species of stoichiometry [Ln(pic)3(hmpa)2], with 8-coordinate Ln of an irregular geometry best considered as close to that of a bicapped trigonal-prism. The picrate ligands chelate in the same manner as in the lighter Ln complexes but with one spanning a trigonal edge, and the hmpa-O donors occuping two apices of the other trigonal face. The ligand ompa has been found to act as a bidentate chelate in all isolated species, displacing one picrate from the metal ion coordination sphere to give ionic complexes. For La, Nd, and Gd, isomorphous (monoclinic, P21/n, Z 4) complexes of stoichiometry [Ln(pic)2(ompa)2(OH2)](pic)·0.5H2O containing 9-coordinate, tricapped trigonal-prismatic Ln with a single aqua ligand have been defined, while for Er, Yb, Lu, and Y, both the coordinated and lattice water molecules are lost in isomorphous (monoclininc, P21/c, Z 8) 8-coordinate, square-antiprismatic species of stoichiometry [Ln(pic)2(ompa)2](pic). For Er, further polymorphs, one monoclinic, P21/c, and the other triclinic, CH19251-IE1.gif, have also been characterised.

Original languageEnglish
JournalAustralian Journal of Chemistry
DOIs
Publication statusPublished - 1 Jan 2019

Fingerprint

Hempa
Lanthanoid Series Elements
Stoichiometry
Ligands
Picrates
Geometry
Prisms
Polymorphism
Metal ions
picric acid
Single crystals
Crystalline materials
X ray diffraction
Molecules
Water

Cite this

@article{a34d654c69624ef693d84371169c6cb9,
title = "Structural Systematics of Lanthanide(iii) Picrate Solvates: Hexamethylphosphoramide and Octamethylpyrophosphoramide Adducts",
abstract = "Crystalline products of the reactions of lanthanide picrates, Ln(pic)3 (pic = 2,4,6-trinitrophenoxide), with hexamethylphosphoramide (hmpa) and octamethylpyrophosphoramide (ompa) have been characterised by single-crystal X-ray diffraction studies. With hmpa and lighter lanthanides (La, Sm, Eu), isomorphous species (monoclinic, P21/c, Z 4) of stoichiometry [Ln(pic)3(hmpa)3]·0.5H2O, have been defined where the molecular units in the lattice contain 9-coordinate Ln with tricapped trigonal-prismatic coordination geometry. The picrate ligands are bidentate through phenoxide-O and 2-nitro-O, with the latter occupying the capping positions, while the hmpa ligands are singly O-bound to one trigonal face. Heavier lanthanides (Gd, Lu) and Y have been found to give isomorphous (monoclinic, P21/n, Z 4) species of stoichiometry [Ln(pic)3(hmpa)2], with 8-coordinate Ln of an irregular geometry best considered as close to that of a bicapped trigonal-prism. The picrate ligands chelate in the same manner as in the lighter Ln complexes but with one spanning a trigonal edge, and the hmpa-O donors occuping two apices of the other trigonal face. The ligand ompa has been found to act as a bidentate chelate in all isolated species, displacing one picrate from the metal ion coordination sphere to give ionic complexes. For La, Nd, and Gd, isomorphous (monoclinic, P21/n, Z 4) complexes of stoichiometry [Ln(pic)2(ompa)2(OH2)](pic)·0.5H2O containing 9-coordinate, tricapped trigonal-prismatic Ln with a single aqua ligand have been defined, while for Er, Yb, Lu, and Y, both the coordinated and lattice water molecules are lost in isomorphous (monoclininc, P21/c, Z 8) 8-coordinate, square-antiprismatic species of stoichiometry [Ln(pic)2(ompa)2](pic). For Er, further polymorphs, one monoclinic, P21/c, and the other triclinic, CH19251-IE1.gif, have also been characterised.",
author = "Chan, {Eric J.} and Harrowfield, {Jack M.} and Skelton, {Brian W.} and Sobolev, {Alexandre N.} and White, {Allan H.}",
year = "2019",
month = "1",
day = "1",
doi = "10.1071/CH19251",
language = "English",
journal = "Australian Journal of Chemistry:an international journal for chemical science",
issn = "0004-9425",
publisher = "CSIRO Publishing",

}

TY - JOUR

T1 - Structural Systematics of Lanthanide(iii) Picrate Solvates

T2 - Hexamethylphosphoramide and Octamethylpyrophosphoramide Adducts

AU - Chan, Eric J.

AU - Harrowfield, Jack M.

AU - Skelton, Brian W.

AU - Sobolev, Alexandre N.

AU - White, Allan H.

PY - 2019/1/1

Y1 - 2019/1/1

N2 - Crystalline products of the reactions of lanthanide picrates, Ln(pic)3 (pic = 2,4,6-trinitrophenoxide), with hexamethylphosphoramide (hmpa) and octamethylpyrophosphoramide (ompa) have been characterised by single-crystal X-ray diffraction studies. With hmpa and lighter lanthanides (La, Sm, Eu), isomorphous species (monoclinic, P21/c, Z 4) of stoichiometry [Ln(pic)3(hmpa)3]·0.5H2O, have been defined where the molecular units in the lattice contain 9-coordinate Ln with tricapped trigonal-prismatic coordination geometry. The picrate ligands are bidentate through phenoxide-O and 2-nitro-O, with the latter occupying the capping positions, while the hmpa ligands are singly O-bound to one trigonal face. Heavier lanthanides (Gd, Lu) and Y have been found to give isomorphous (monoclinic, P21/n, Z 4) species of stoichiometry [Ln(pic)3(hmpa)2], with 8-coordinate Ln of an irregular geometry best considered as close to that of a bicapped trigonal-prism. The picrate ligands chelate in the same manner as in the lighter Ln complexes but with one spanning a trigonal edge, and the hmpa-O donors occuping two apices of the other trigonal face. The ligand ompa has been found to act as a bidentate chelate in all isolated species, displacing one picrate from the metal ion coordination sphere to give ionic complexes. For La, Nd, and Gd, isomorphous (monoclinic, P21/n, Z 4) complexes of stoichiometry [Ln(pic)2(ompa)2(OH2)](pic)·0.5H2O containing 9-coordinate, tricapped trigonal-prismatic Ln with a single aqua ligand have been defined, while for Er, Yb, Lu, and Y, both the coordinated and lattice water molecules are lost in isomorphous (monoclininc, P21/c, Z 8) 8-coordinate, square-antiprismatic species of stoichiometry [Ln(pic)2(ompa)2](pic). For Er, further polymorphs, one monoclinic, P21/c, and the other triclinic, CH19251-IE1.gif, have also been characterised.

AB - Crystalline products of the reactions of lanthanide picrates, Ln(pic)3 (pic = 2,4,6-trinitrophenoxide), with hexamethylphosphoramide (hmpa) and octamethylpyrophosphoramide (ompa) have been characterised by single-crystal X-ray diffraction studies. With hmpa and lighter lanthanides (La, Sm, Eu), isomorphous species (monoclinic, P21/c, Z 4) of stoichiometry [Ln(pic)3(hmpa)3]·0.5H2O, have been defined where the molecular units in the lattice contain 9-coordinate Ln with tricapped trigonal-prismatic coordination geometry. The picrate ligands are bidentate through phenoxide-O and 2-nitro-O, with the latter occupying the capping positions, while the hmpa ligands are singly O-bound to one trigonal face. Heavier lanthanides (Gd, Lu) and Y have been found to give isomorphous (monoclinic, P21/n, Z 4) species of stoichiometry [Ln(pic)3(hmpa)2], with 8-coordinate Ln of an irregular geometry best considered as close to that of a bicapped trigonal-prism. The picrate ligands chelate in the same manner as in the lighter Ln complexes but with one spanning a trigonal edge, and the hmpa-O donors occuping two apices of the other trigonal face. The ligand ompa has been found to act as a bidentate chelate in all isolated species, displacing one picrate from the metal ion coordination sphere to give ionic complexes. For La, Nd, and Gd, isomorphous (monoclinic, P21/n, Z 4) complexes of stoichiometry [Ln(pic)2(ompa)2(OH2)](pic)·0.5H2O containing 9-coordinate, tricapped trigonal-prismatic Ln with a single aqua ligand have been defined, while for Er, Yb, Lu, and Y, both the coordinated and lattice water molecules are lost in isomorphous (monoclininc, P21/c, Z 8) 8-coordinate, square-antiprismatic species of stoichiometry [Ln(pic)2(ompa)2](pic). For Er, further polymorphs, one monoclinic, P21/c, and the other triclinic, CH19251-IE1.gif, have also been characterised.

UR - http://www.scopus.com/inward/record.url?scp=85073394825&partnerID=8YFLogxK

U2 - 10.1071/CH19251

DO - 10.1071/CH19251

M3 - Article

JO - Australian Journal of Chemistry:an international journal for chemical science

JF - Australian Journal of Chemistry:an international journal for chemical science

SN - 0004-9425

ER -