TY - JOUR
T1 - Structural analysis of faults related to a heterogeneous stress history: reconstruction of a dismembered gold deposit, Stawell, western Lachlan Fold Belt, Australia
AU - Miller, John
AU - Wilson, C.J.L.
PY - 2004
Y1 - 2004
N2 - In the internationally significant Victorian goldfields a complex system of faults dismembers the 5 million ounce Magdala gold deposit. These faults represent a combination of neoformed faults and inherited faults that reflect deformation associated with stress tensors of variable orientation and stress shape ratio (phi). The fault geometry is strongly controlled by the pre-existing rheology. Faults have propagated around the flanks of an antiformal basalt dome, along earlier ductile cleavages and the margins of porphyry dykes. Many of the faults do not have Andersonian geometries and there is no correlation between the orientation of the faults and the palaeostress directions. Much of the faulting is associated with the emplacement of porphyry dykes, additional gold mineralisation related to plutonism and late-stage deformation post-dating the intrusion of the Stawell pluton. Systematic mapping of extension veins associated with faults, striations and conjugate joint sets allowed the construction of a revised and more robust history of brittle deformation. This successfully predicted the offset direction of the currently mined Magdala ore body beneath the studied system of faults. The use of extension veins was a critical aspect of the analysis. If striations on the fault surfaces had solely been used, the offset direction of the new Golden Gift orebody would not have been correctly ascertained. The palaeostress history was delineated via use of compression and tension dihedra, stress inversion of slip data and calculation of theoretical resolved shear stress for faults with orientations similar to those mapped. The calculation of theoretical resolved shear stress directions highlights the importance that the intermediate stress has on the slip direction for faults whose pole does not lie in the plane containing sigma(1) and sigma(3). (C) 2004 Elsevier Ltd. All rights reserved.
AB - In the internationally significant Victorian goldfields a complex system of faults dismembers the 5 million ounce Magdala gold deposit. These faults represent a combination of neoformed faults and inherited faults that reflect deformation associated with stress tensors of variable orientation and stress shape ratio (phi). The fault geometry is strongly controlled by the pre-existing rheology. Faults have propagated around the flanks of an antiformal basalt dome, along earlier ductile cleavages and the margins of porphyry dykes. Many of the faults do not have Andersonian geometries and there is no correlation between the orientation of the faults and the palaeostress directions. Much of the faulting is associated with the emplacement of porphyry dykes, additional gold mineralisation related to plutonism and late-stage deformation post-dating the intrusion of the Stawell pluton. Systematic mapping of extension veins associated with faults, striations and conjugate joint sets allowed the construction of a revised and more robust history of brittle deformation. This successfully predicted the offset direction of the currently mined Magdala ore body beneath the studied system of faults. The use of extension veins was a critical aspect of the analysis. If striations on the fault surfaces had solely been used, the offset direction of the new Golden Gift orebody would not have been correctly ascertained. The palaeostress history was delineated via use of compression and tension dihedra, stress inversion of slip data and calculation of theoretical resolved shear stress for faults with orientations similar to those mapped. The calculation of theoretical resolved shear stress directions highlights the importance that the intermediate stress has on the slip direction for faults whose pole does not lie in the plane containing sigma(1) and sigma(3). (C) 2004 Elsevier Ltd. All rights reserved.
U2 - 10.1016/j.jsg.2003.11.004
DO - 10.1016/j.jsg.2003.11.004
M3 - Article
SN - 0191-8141
VL - 26
SP - 1231
EP - 1256
JO - Journal of Structural Geology
JF - Journal of Structural Geology
IS - 6-7
ER -