TY - JOUR
T1 - Strong phosphorus (P)-zinc (Zn) interactions in a calcareous soil-alfalfa system suggest that rational P fertilization should be considered for Zn biofortification on Zn-deficient soils and phytoremediation of Zn-contaminated soils
AU - He, Honghua
AU - Wu, Miaomiao
AU - Su, Rui
AU - Zhang, Zekun
AU - Chang, Chao
AU - Peng, Qi
AU - Dong, Zhigang
AU - Pang, Jiayin
AU - Lambers, Hans
PY - 2021/1/19
Y1 - 2021/1/19
N2 - Aims: Zinc (Zn) and phosphorus (P) often interact negatively with each other in soil-plant systems. We investigated the effects of P-Zn interaction on Zn and P accumulation and partitioning in alfalfa. Methods: Plants were grown in a calcareous soil supplied with different rates of Zn (0, 200, and 800 mg kg−1) and P (0, 20, and 80 mg kg−1). Plant dry mass, Zn and P concentrations in shoots and roots, bulk soil and rhizosheath pH, rhizosheath carboxylates, and DTPA-extractable Zn concentration in the bulk soil were determined. Results: Phosphorus-Zn interaction significantly affected DTPA-extractable Zn concentration, plant dry mass, accumulation of Zn and P, and partitioning of Zn in alfalfa, but did not affect rhizosheath pH or the amounts of rhizosheath carboxylates. Increasing P rate promoted plant growth at all soil Zn rates and might enhance the plants’ capacity to cope with excessive Zn; it resulted in a lower rhizosheath pH, which likely contributed to greater Zn and P uptake. Zinc deficiency enhanced exudation of citrate, malonate and malate, while the release of tartrate was related with P deficiency. Conclusions: There are strong P-Zn interactions in calcareous soil-plant system, such interactions significantly affect Zn bioavailability, plant growth, accumulation of Zn and P, and partitioning of Zn in alfalfa. Rational P fertilization should be considered for efficient Zn biofortification on Zn-deficient soils and phytoremediation of Zn-contaminated soils.
AB - Aims: Zinc (Zn) and phosphorus (P) often interact negatively with each other in soil-plant systems. We investigated the effects of P-Zn interaction on Zn and P accumulation and partitioning in alfalfa. Methods: Plants were grown in a calcareous soil supplied with different rates of Zn (0, 200, and 800 mg kg−1) and P (0, 20, and 80 mg kg−1). Plant dry mass, Zn and P concentrations in shoots and roots, bulk soil and rhizosheath pH, rhizosheath carboxylates, and DTPA-extractable Zn concentration in the bulk soil were determined. Results: Phosphorus-Zn interaction significantly affected DTPA-extractable Zn concentration, plant dry mass, accumulation of Zn and P, and partitioning of Zn in alfalfa, but did not affect rhizosheath pH or the amounts of rhizosheath carboxylates. Increasing P rate promoted plant growth at all soil Zn rates and might enhance the plants’ capacity to cope with excessive Zn; it resulted in a lower rhizosheath pH, which likely contributed to greater Zn and P uptake. Zinc deficiency enhanced exudation of citrate, malonate and malate, while the release of tartrate was related with P deficiency. Conclusions: There are strong P-Zn interactions in calcareous soil-plant system, such interactions significantly affect Zn bioavailability, plant growth, accumulation of Zn and P, and partitioning of Zn in alfalfa. Rational P fertilization should be considered for efficient Zn biofortification on Zn-deficient soils and phytoremediation of Zn-contaminated soils.
KW - DTPA-extractable Zn
KW - Medicago sativa
KW - Partitioning
KW - Rhizosheath carboxylates
KW - Rhizosheath pH
UR - http://www.scopus.com/inward/record.url?scp=85100005833&partnerID=8YFLogxK
U2 - 10.1007/s11104-020-04793-w
DO - 10.1007/s11104-020-04793-w
M3 - Article
JO - Plant and Soil: An International Journal on Plant-Soil Relationships
JF - Plant and Soil: An International Journal on Plant-Soil Relationships
SN - 0032-079X
ER -