Abstract
Groundwater pumping has led to extensive water-level declines and seawater intrusion in coastal Los Angeles, California (USA). A SUTRA-based solute-transport model was developed to test the hydraulic implications of a sequence-stratigraphic model of the Dominguez Gap area and to assess the effects of water-management scenarios. The model is two-dimensional, vertical and follows an approximate flow line extending from the Pacific Ocean through the Dominguez Gap area. Results indicate that a newly identified fault system can provide a pathway for transport of seawater and that a stratigraphic boundary located between the Bent Spring and Upper Wilmington sequences may control the vertical movement of seawater. Three 50-year water-management scenarios were considered: (1) no change in water-management practices; (2) installation of a slurry wall; and (3) raising inland water levels to 7.6 m above sea level. Scenario 3 was the most effective by reversing seawater intrusion. The effects of an instantaneous 1-m sea-level rise were also tested using water-management scenarios 1 and 3. Results from two 100-year simulations indicate that a 1-m sea-level rise may accelerate seawater intrusion for scenario 1; however, scenario 3 remains effective for controlling seawater intrusion.
Original language | English |
---|---|
Pages (from-to) | 1699-1725 |
Number of pages | 27 |
Journal | Hydrogeology Journal |
Volume | 17 |
Issue number | 7 |
DOIs | |
Publication status | Published - 2009 |
Externally published | Yes |