Statistical exploratory analysis of genetic algorithms

Andrew Simon Timothy Czarn

    Research output: ThesisDoctoral Thesis

    638 Downloads (Pure)


    [Truncated abstract] Genetic algorithms (GAs) have been extensively used and studied in computer science, yet there is no generally accepted methodology for exploring which parameters significantly affect performance, whether there is any interaction between parameters and how performance varies with respect to changes in parameters. This thesis presents a rigorous yet practical statistical methodology for the exploratory study of GAs. This methodology addresses the issues of experimental design, blocking, power and response curve analysis. It details how statistical analysis may assist the investigator along the exploratory pathway. The statistical methodology is demonstrated in this thesis using a number of case studies with a classical genetic algorithm with one-point crossover and bit-replacement mutation. In doing so we answer a number of questions about the relationship between the performance of the GA and the operators and encoding used. The methodology is suitable, however, to be applied to other adaptive optimization algorithms not treated in this thesis. In the first instance, as an initial demonstration of our methodology, we describe case studies using four standard test functions. It is found that the effect upon performance of crossover is predominantly linear while the effect of mutation is predominantly quadratic. Higher order effects are noted but contribute less to overall behaviour. In the case of crossover both positive and negative gradients are found which suggests using rates as high as possible for some problems while possibly excluding it for others. .... This is illustrated by showing how the use of Gray codes impedes the performance on a lower modality test function compared with a higher modality test function. Computer animation is then used to illustrate the actual mechanism by which this occurs. Fourthly, the traditional concept of a GA is that of selection, crossover and mutation. However, a limited amount of data from the literature has suggested that the niche for the beneficial effect of crossover upon GA performance may be smaller than has traditionally been held. Based upon previous results on not-linear-separable problems an exploration is made by comparing two test problem suites, one comprising non-rotated functions and the other comprising the same functions rotated by 45 degrees in the solution space rendering them not-linear-separable. It is shown that for the difficult rotated functions the crossover operator is detrimental to the performance of the GA. It is conjectured that what makes a problem difficult for the GA is complex and involves factors such as the degree of optimization at local minima due to crossover, the bias associated with the mutation operator and the Hamming Distances present in the individual problems due to the encoding. Furthermore, the GA was tested on a real world landscape minimization problem to see if the results obtained would match those from the difficult rotated functions. It is demonstrated that they match and that the features which make certain of the test functions difficult are also present in the real world problem. Overall, the proposed methodology is found to be an effective tool for revealing relationships between a randomized optimization algorithm and its encoding and parameters that are difficult to establish from more ad-hoc experimental studies alone.
    Original languageEnglish
    QualificationDoctor of Philosophy
    Publication statusUnpublished - 2008


    Dive into the research topics of 'Statistical exploratory analysis of genetic algorithms'. Together they form a unique fingerprint.

    Cite this