Spontaneous Formation of Noble- and Heavy-Metal-Free Alloyed Semiconductor Quantum Rods for Efficient Photocatalysis

Dechao Chen, Huayang Zhang, Yunguo Li, Yingping Pang, Zongyou Yin, Hongqi Sun, Lai Chang Zhang, Shaobin Wang, Martin Saunders, Emily Barker, Guohua Jia

Research output: Contribution to journalArticle

24 Citations (Scopus)

Abstract

Quasi-1D cadmium chalcogenide quantum rods (QRs) are benchmark semiconductor materials that are combined with noble metals to constitute QR heterostructures for efficient photocatalysis. However, the high toxicity of cadmium and cost of noble metals are the main obstacles to their widespread use. Herein, a facile colloidal synthetic approach is reported that leads to the spontaneous formation of cadmium-free alloyed ZnSxSe1− x QRs from polydisperse ZnSe nanowires by alkylthiol etching. The obtained non-noble-metal ZnSxSe1− x QRs can not only be directly adopted as efficient photocatalysts for water oxidation, showing a striking oxygen evolution capability of 3000 µmol g−1 h−1, but also be utilized to prepare QR-sensitized TiO2 photoanodes which present enhanced photo-electrochemical (PEC) activity. Density functional theory (DFT) simulations reveal that alloyed ZnSxSe1− x QRs have highly active Zn sites on the (100) surface and reduced energy barrier for oxygen evolution, which in turn, are beneficial to their outstanding photocatalytic and PEC activities.

Original languageEnglish
Article number1803351
JournalAdvanced Materials
Volume30
Issue number39
DOIs
Publication statusPublished - 26 Sep 2018

Fingerprint Dive into the research topics of 'Spontaneous Formation of Noble- and Heavy-Metal-Free Alloyed Semiconductor Quantum Rods for Efficient Photocatalysis'. Together they form a unique fingerprint.

  • Cite this

    Chen, D., Zhang, H., Li, Y., Pang, Y., Yin, Z., Sun, H., Zhang, L. C., Wang, S., Saunders, M., Barker, E., & Jia, G. (2018). Spontaneous Formation of Noble- and Heavy-Metal-Free Alloyed Semiconductor Quantum Rods for Efficient Photocatalysis. Advanced Materials, 30(39), [1803351]. https://doi.org/10.1002/adma.201803351