TY - JOUR
T1 - Spectroscopic evidence for redox isomerism in the 1,4-diethynylbenzene- bridged heterobimetallic cation [{Fe(dppe)Cp*}(μ-C≡CC6H4C≡C){Mo(dppe)(η-C7H7)}]PF 6
AU - Fitzgerald, E.C.
AU - Ladjarafi, A.
AU - Brown, N.J.
AU - Collison, D.
AU - Costuas, K.
AU - Edge, R.
AU - Halet, J.-F.
AU - Justaud, F.
AU - Low, Paul
AU - Meghezzi, H.
AU - Roisnel, T.
AU - Whiteley, M.W.
AU - Lapinte, C.
PY - 2011/8/8
Y1 - 2011/8/8
N2 - Reaction of [FeCl(dppe)Cp*] with [Mo(C≡CC6H4-4-C≡CH)(dppe)(η-C7H7)], 1, and NaBPh4 in methanol gives the alkynylvinylidene complex [{Fe(dppe)Cp*}{μ-C≡CC6H4(H)C═C}{Mo(dppe)(η-C7H7)}]BPh4, [2A]BPh4, which is deprotonated to form the heterobimetallic, 1,4-diethynylbenzene-bridged complex [{Fe(dppe)Cp*}(μ-C≡CC6H4C≡C){Mo(dppe)(η-C7H7)}], 3. The alkynylvinylidene compound [2A]BPh4 exists as the major component of an equilibrium mixture with [Fe(dppe)Cp*}{μ-C═C(H)C6H4C≡C}{Mo(dppe)(η-C7H7)}]BPh4, [2B]BPh4, and is formed as a consequence of proton migration between the Cβ carbons of the vinylidene and alkynyl ends of the bridging ligand. Cyclic voltammetric investigations reveal that 3 undergoes two reversible one-electron oxidations to cationic [3]+ and [3]2+, which have been isolated as the [PF6]− salts after chemical oxidation. Computational (DFT) studies on [3]n+ indicate that while the HOMO of neutral 3 is rather heavily localized on the Mo center, in [3]+ the frontier orbitals are more evenly distributed over both metals, with the concentration of spin density being sensitive to the relative disposition of the metal end-cap fragments about the diethynylbenzene ligand. Experimental investigations on [3]PF6 by IR and EPR spectroscopy provide evidence for the coexistence of redox isomers [3A]+ and [3B]+, in which spin density is localized at the molybdenum or iron center, respectively. The solution IR spectrum of [3]PF6 exhibits an unusual four-band pattern in the ν(C≡C) region, consistent with the observation of two isomeric forms of [3]PF6, which are “valence trapped” on the short time scale of IR spectroscopy. In the frozen solution EPR spectrum, at 120 K, the spectroscopic signatures of both paramagnetic end-caps Mo(dppe)(η-C7H7) and Fe(dppe)Cp* are observed. The properties of [3]n+ are discussed with reference to the parent homobimetallics [{MLx}2(μ-C≡CC6H4C≡C)]n+ [MLx = Fe(dppe)Cp*, [4]n+, and Mo(dppe)(η-C7H7), [5]n+, n = 0, 1, 2].
AB - Reaction of [FeCl(dppe)Cp*] with [Mo(C≡CC6H4-4-C≡CH)(dppe)(η-C7H7)], 1, and NaBPh4 in methanol gives the alkynylvinylidene complex [{Fe(dppe)Cp*}{μ-C≡CC6H4(H)C═C}{Mo(dppe)(η-C7H7)}]BPh4, [2A]BPh4, which is deprotonated to form the heterobimetallic, 1,4-diethynylbenzene-bridged complex [{Fe(dppe)Cp*}(μ-C≡CC6H4C≡C){Mo(dppe)(η-C7H7)}], 3. The alkynylvinylidene compound [2A]BPh4 exists as the major component of an equilibrium mixture with [Fe(dppe)Cp*}{μ-C═C(H)C6H4C≡C}{Mo(dppe)(η-C7H7)}]BPh4, [2B]BPh4, and is formed as a consequence of proton migration between the Cβ carbons of the vinylidene and alkynyl ends of the bridging ligand. Cyclic voltammetric investigations reveal that 3 undergoes two reversible one-electron oxidations to cationic [3]+ and [3]2+, which have been isolated as the [PF6]− salts after chemical oxidation. Computational (DFT) studies on [3]n+ indicate that while the HOMO of neutral 3 is rather heavily localized on the Mo center, in [3]+ the frontier orbitals are more evenly distributed over both metals, with the concentration of spin density being sensitive to the relative disposition of the metal end-cap fragments about the diethynylbenzene ligand. Experimental investigations on [3]PF6 by IR and EPR spectroscopy provide evidence for the coexistence of redox isomers [3A]+ and [3B]+, in which spin density is localized at the molybdenum or iron center, respectively. The solution IR spectrum of [3]PF6 exhibits an unusual four-band pattern in the ν(C≡C) region, consistent with the observation of two isomeric forms of [3]PF6, which are “valence trapped” on the short time scale of IR spectroscopy. In the frozen solution EPR spectrum, at 120 K, the spectroscopic signatures of both paramagnetic end-caps Mo(dppe)(η-C7H7) and Fe(dppe)Cp* are observed. The properties of [3]n+ are discussed with reference to the parent homobimetallics [{MLx}2(μ-C≡CC6H4C≡C)]n+ [MLx = Fe(dppe)Cp*, [4]n+, and Mo(dppe)(η-C7H7), [5]n+, n = 0, 1, 2].
U2 - 10.1021/om200488b
DO - 10.1021/om200488b
M3 - Article
SN - 0276-7333
VL - 30
SP - 4180
EP - 4195
JO - Organometallics
JF - Organometallics
IS - 15
ER -