TY - JOUR
T1 - Source component mixing controls the variability in Cu and Au endowment along the strike of the Eastern Andean Cordillera in Peru
AU - Angerer, Thomas
AU - Kemp, Anthony I.S.
AU - Hagemann, Steffen G.
AU - Witt, Walter K.
AU - Santos, João O.
AU - Schindler, Christian
AU - Villanes, Carlos
PY - 2018/5/1
Y1 - 2018/5/1
N2 - Mississippian arc magmatic suites of the Au-rich Pataz and Cu-dominated Montañitas regions in Peru reveal distinct modes of magmatic-hydrothermal petro- and metallogenesis. The distinction is remarkable due to their broad contemporaneity (336–322 Ma), arc-parallel position, and close distance (<50 km) to each other. In both arc regions, petrography, geochemistry, and the tectonic setting of magmatic suites suggest a rapid switch from syn-collisional/compressional to post-collisional/extensional (with ‘A2-type’ signature) emplacement regime. Rocks of the Au-rich Pataz region originate from mixed sources with a contribution from the mantle (εHf > 0 and δ18O of ~ 5.3‰) and assimilated old crust (variously low εHf and δ18O > 5.3‰). The ultimate source of Au in the mineralised Pataz batholith was oxidised (fO2 at FMQ buffer; based on zircon trace chemistry) and alkali-, LILE- and HFSE-enriched, most likely represented by the metasomatised mantle. The syn-extensional emplacement of the relatively reduced (ΔFMQ <0), but unmineralised, A2-type suite involved assimilation of reduced crust. Associated, reduced, magmatic-hydrothermal fluids infiltrated the Au-bearing batholith suite and effectively mobilised and transported and concentrated Au. In the Montañitas region, rocks are oxidised (ΔFMQ > 0) and dominantly mantle derived without significant incorporation of crustal material. Samples from the Cu-mineralised suites indicate the additional contribution of a δ18O <5.3‰ source, potentially melted layer-2 gabbro. In addition, the elevated whole-rock La/Yb and Sr/Y ratios are compatible with minor addition of slab-derived material, which may have enhanced Cu endowment in this region. Late-magmatic, oxidised fluids derived from the younger A2-type suite controlled Cu mobilisation and concentration, while Au behaved largely refractory. In general terms, it is postulated that source mixing in continental arcs is a first-order control of contrasting Cu and Au endowment and that sequential intrusion processes facilitate late-magmatic-hydrothermal mobilisation and concentration of specific metal assemblages.
AB - Mississippian arc magmatic suites of the Au-rich Pataz and Cu-dominated Montañitas regions in Peru reveal distinct modes of magmatic-hydrothermal petro- and metallogenesis. The distinction is remarkable due to their broad contemporaneity (336–322 Ma), arc-parallel position, and close distance (<50 km) to each other. In both arc regions, petrography, geochemistry, and the tectonic setting of magmatic suites suggest a rapid switch from syn-collisional/compressional to post-collisional/extensional (with ‘A2-type’ signature) emplacement regime. Rocks of the Au-rich Pataz region originate from mixed sources with a contribution from the mantle (εHf > 0 and δ18O of ~ 5.3‰) and assimilated old crust (variously low εHf and δ18O > 5.3‰). The ultimate source of Au in the mineralised Pataz batholith was oxidised (fO2 at FMQ buffer; based on zircon trace chemistry) and alkali-, LILE- and HFSE-enriched, most likely represented by the metasomatised mantle. The syn-extensional emplacement of the relatively reduced (ΔFMQ <0), but unmineralised, A2-type suite involved assimilation of reduced crust. Associated, reduced, magmatic-hydrothermal fluids infiltrated the Au-bearing batholith suite and effectively mobilised and transported and concentrated Au. In the Montañitas region, rocks are oxidised (ΔFMQ > 0) and dominantly mantle derived without significant incorporation of crustal material. Samples from the Cu-mineralised suites indicate the additional contribution of a δ18O <5.3‰ source, potentially melted layer-2 gabbro. In addition, the elevated whole-rock La/Yb and Sr/Y ratios are compatible with minor addition of slab-derived material, which may have enhanced Cu endowment in this region. Late-magmatic, oxidised fluids derived from the younger A2-type suite controlled Cu mobilisation and concentration, while Au behaved largely refractory. In general terms, it is postulated that source mixing in continental arcs is a first-order control of contrasting Cu and Au endowment and that sequential intrusion processes facilitate late-magmatic-hydrothermal mobilisation and concentration of specific metal assemblages.
KW - Continental arc magmatism
KW - Hf–O isotopes
KW - U–Pb geochronology
KW - Whole-rock geochemistry
KW - Zircon trace elements
UR - http://www.scopus.com/inward/record.url?scp=85045278339&partnerID=8YFLogxK
U2 - 10.1007/s00410-018-1462-5
DO - 10.1007/s00410-018-1462-5
M3 - Article
AN - SCOPUS:85045278339
SN - 0010-7999
VL - 173
JO - Contributions to Mineralogy and Petrology
JF - Contributions to Mineralogy and Petrology
IS - 5
M1 - 36
ER -