Some perspectives on (non)local phase transitions and minimal surfaces

Research output: Contribution to journalArticlepeer-review

1 Citation (Scopus)

Abstract

We present here some classical and modern results about phase transitions and minimal surfaces, which are quite intertwined topics. We start from scratch, revisiting the theory of phase transitions as put forth by Lev Landau. Then, we relate the short-range phase transitions to the classical minimal surfaces, whose basic regularity theory is presented, also in connection with a celebrated conjecture by Ennio De Giorgi. With this, we explore the recently developed subject of long-range phase transitions and relate its genuinely nonlocal regime to the analysis of fractional minimal surfaces.

Original languageEnglish
Article number2330001
Number of pages77
JournalBulletin of Mathematical Sciences
Volume13
Issue number1
DOIs
Publication statusPublished - 1 Apr 2023

Fingerprint

Dive into the research topics of 'Some perspectives on (non)local phase transitions and minimal surfaces'. Together they form a unique fingerprint.

Cite this