TY - JOUR

T1 - Solving the 3D acoustic wave equation on generalized structured meshes: A finite-difference time-domain approach

AU - Shragge, Jeffrey

PY - 2014

Y1 - 2014

N2 - © 2014 Society of Exploration Geophysicists. The key computational kernel of most advanced 3D seismic imaging and inversion algorithms used in exploration seismology involves calculating solutions of the 3D acoustic wave equation, most commonly with a finite-difference time-domain (FDTD) methodology. Although well suited for regularly sampled rectilinear computational domains, FDTD methods seemingly have limited applicability in scenarios involving irregular 3D domain boundary surfaces and mesh interiors best described by non-Cartesian geometry (e.g., surface topography). Using coordinate mapping relationships and differential geometry, an FDTD approach can be developed for generating solutions to the 3D acoustic wave equation that is applicable to generalized 3D coordinate systems and (quadrilateral-faced hexahedral) structured meshes. The developed numerical implementation is similar to the established Cartesian approaches, save for a necessary introduction of weighted first- and mixed secondorder partial-derivative operators that account for spatially varying geometry. The approach was validated on three different types of computational meshes: (1) an "internal boundary" mesh conforming to a dipping water bottom layer, (2) analytic "semiorthogonal cylindrical" coordinates, and (3) analytic semiorthogonal and numerically specified "topographic" coordinate meshes. Impulse response tests and numerical analysis demonstrated the viability of the approach for kernel computations for 3D seismic imaging and inversion experiments for non-Cartesian geometry scenarios.

AB - © 2014 Society of Exploration Geophysicists. The key computational kernel of most advanced 3D seismic imaging and inversion algorithms used in exploration seismology involves calculating solutions of the 3D acoustic wave equation, most commonly with a finite-difference time-domain (FDTD) methodology. Although well suited for regularly sampled rectilinear computational domains, FDTD methods seemingly have limited applicability in scenarios involving irregular 3D domain boundary surfaces and mesh interiors best described by non-Cartesian geometry (e.g., surface topography). Using coordinate mapping relationships and differential geometry, an FDTD approach can be developed for generating solutions to the 3D acoustic wave equation that is applicable to generalized 3D coordinate systems and (quadrilateral-faced hexahedral) structured meshes. The developed numerical implementation is similar to the established Cartesian approaches, save for a necessary introduction of weighted first- and mixed secondorder partial-derivative operators that account for spatially varying geometry. The approach was validated on three different types of computational meshes: (1) an "internal boundary" mesh conforming to a dipping water bottom layer, (2) analytic "semiorthogonal cylindrical" coordinates, and (3) analytic semiorthogonal and numerically specified "topographic" coordinate meshes. Impulse response tests and numerical analysis demonstrated the viability of the approach for kernel computations for 3D seismic imaging and inversion experiments for non-Cartesian geometry scenarios.

U2 - 10.1190/GEO2014-0172.1

DO - 10.1190/GEO2014-0172.1

M3 - Article

VL - 79

SP - T363-T378

JO - Geophysics

JF - Geophysics

SN - 0016-8033

IS - 6

ER -