TY - JOUR
T1 - Smallholder farms’ adaptation to the impacts of climate change
T2 - Evidence from China's Loess Plateau
AU - Tang, Kai
AU - Hailu, Atakelty
PY - 2020/2
Y1 - 2020/2
N2 - The impacts of climate change on agriculture in developing countries will depend on the extent to which agricultural production in those regions adapts to climate change's influences. This study uses a whole-farm land use optimisation approach to explore climate change impacts, when including adaptation, on farm profitability, production and associated greenhouse gas (GHG) emissions in the Loess Plateau of northern China. The results show that with adaptation activities, the losses in smallholder farm profitability caused by the climate change could be moderate. Declining rainfall results in land use changes that generate higher on-farm GHG emissions with the most economically beneficial adaptations. With 5 % or 10 % decline in annual rainfall, the introduction of agricultural carbon tax would generate substantial reduction in on-farm GHG emissions. With 30 % rainfall reduction, agricultural carbon tax is not likely to bring about considerable emission reduction. The economically optimised land uses are generally sensitive to potential changes. When rainfall reductions appear, there is a clear trend toward reducing cropping area and transiting to pasture. With 5–10% rainfall reductions, increasing agricultural carbon tax with same rainfall reduction leads to the expansion in cropping enterprises. However, with 30 % rainfall reduction, land allocations are not sensitive to agricultural carbon tax. When with declining annual rainfall, in the optimal enterprises more oats-pasture rotations are employed to reduce wheat dominated rotations. Besides land use patterns, adaptations through altering farm management practices are also necessary. The economically optimised sheep flock would be increased considerably with declining rainfall. Overall, policymakers are suggested to initial more educational schemes to tell smallholder farmers how to make the best use of available adaptation strategies and consider changes in climate when design and implement agricultural policy.
AB - The impacts of climate change on agriculture in developing countries will depend on the extent to which agricultural production in those regions adapts to climate change's influences. This study uses a whole-farm land use optimisation approach to explore climate change impacts, when including adaptation, on farm profitability, production and associated greenhouse gas (GHG) emissions in the Loess Plateau of northern China. The results show that with adaptation activities, the losses in smallholder farm profitability caused by the climate change could be moderate. Declining rainfall results in land use changes that generate higher on-farm GHG emissions with the most economically beneficial adaptations. With 5 % or 10 % decline in annual rainfall, the introduction of agricultural carbon tax would generate substantial reduction in on-farm GHG emissions. With 30 % rainfall reduction, agricultural carbon tax is not likely to bring about considerable emission reduction. The economically optimised land uses are generally sensitive to potential changes. When rainfall reductions appear, there is a clear trend toward reducing cropping area and transiting to pasture. With 5–10% rainfall reductions, increasing agricultural carbon tax with same rainfall reduction leads to the expansion in cropping enterprises. However, with 30 % rainfall reduction, land allocations are not sensitive to agricultural carbon tax. When with declining annual rainfall, in the optimal enterprises more oats-pasture rotations are employed to reduce wheat dominated rotations. Besides land use patterns, adaptations through altering farm management practices are also necessary. The economically optimised sheep flock would be increased considerably with declining rainfall. Overall, policymakers are suggested to initial more educational schemes to tell smallholder farmers how to make the best use of available adaptation strategies and consider changes in climate when design and implement agricultural policy.
KW - Climate change impacts
KW - Dryland mixed agriculture
KW - Loess Plateau
KW - Smallholder farmers’ adaptation
KW - Whole-farm land use optimimisation modelling
UR - http://www.scopus.com/inward/record.url?scp=85075419663&partnerID=8YFLogxK
U2 - 10.1016/j.landusepol.2019.104353
DO - 10.1016/j.landusepol.2019.104353
M3 - Article
AN - SCOPUS:85075419663
SN - 0264-8377
VL - 91
JO - Land Use Policy
JF - Land Use Policy
M1 - 104353
ER -