TY - JOUR
T1 - Signal-correction errors in the EasyOne Pro LAB multiple-breath washout device significantly impact outcomes in children and adults
AU - Oestreich, Marc Alexander
AU - Wyler, Florian
AU - Buess, Christian
AU - Etter, Blaise
AU - Ramsey, Kathryn A.
AU - Latzin, Philipp
N1 - Publisher Copyright:
© 2024 the American Physiological Society.
PY - 2024/3
Y1 - 2024/3
N2 - Multiple-breath washout (MBW) is an established technique to assess functional residual capacity (FRC) and ventilation inhomogeneity in the lung. Indirect calculation of nitrogen concentration requires accurate measurement of gas concentrations. To investigate the accuracy of the CO2 concentration and molar mass (MM) values used for the indirect calculation of nitrogen concentration in a commercial MBW device [EasyOne Pro LAB (EOPL), ndd Medizintechnik AG, Switzerland] and its impact on outcomes. We used high-precision gas mixtures to evaluate CO2 and MM sensor output in vivo and in vitro. We developed updated algorithms to correct observed errors and assessed the impact on MBW outcomes and FRC measurement accuracy compared with body plethysmography. The respiratory exchange ratio (RER)-based adjustment of the measured CO2 signal used in the EOPL led to an overestimated CO2 signal (range -0.1% to 1.0%). In addition, an uncorrected dependence on humidity was identified. These combined effects resulted in an overestimation of expired nitrogen concentrations (range -0.7% to 2.6%), and consequently MBW outcomes. Corrected algorithms reduced the mean (SD) cumulative expired volume by 15.8% (9.7%), FRC by 6.6% (3.0%), and lung clearance index by 9.9% (7.6%). Differences in FRC between the EOPL and body plethysmography further increased. Inadequate signal correction causes RER- and humidity-dependent expired nitrogen concentration errors and overestimation of test outcomes. Updated algorithms reduce average signal error, however, RER values far from the population average still cause measurement errors. Despite improved signal accuracy, the updated algorithm increased the difference in FRC between the EOPL and body plethysmography.
AB - Multiple-breath washout (MBW) is an established technique to assess functional residual capacity (FRC) and ventilation inhomogeneity in the lung. Indirect calculation of nitrogen concentration requires accurate measurement of gas concentrations. To investigate the accuracy of the CO2 concentration and molar mass (MM) values used for the indirect calculation of nitrogen concentration in a commercial MBW device [EasyOne Pro LAB (EOPL), ndd Medizintechnik AG, Switzerland] and its impact on outcomes. We used high-precision gas mixtures to evaluate CO2 and MM sensor output in vivo and in vitro. We developed updated algorithms to correct observed errors and assessed the impact on MBW outcomes and FRC measurement accuracy compared with body plethysmography. The respiratory exchange ratio (RER)-based adjustment of the measured CO2 signal used in the EOPL led to an overestimated CO2 signal (range -0.1% to 1.0%). In addition, an uncorrected dependence on humidity was identified. These combined effects resulted in an overestimation of expired nitrogen concentrations (range -0.7% to 2.6%), and consequently MBW outcomes. Corrected algorithms reduced the mean (SD) cumulative expired volume by 15.8% (9.7%), FRC by 6.6% (3.0%), and lung clearance index by 9.9% (7.6%). Differences in FRC between the EOPL and body plethysmography further increased. Inadequate signal correction causes RER- and humidity-dependent expired nitrogen concentration errors and overestimation of test outcomes. Updated algorithms reduce average signal error, however, RER values far from the population average still cause measurement errors. Despite improved signal accuracy, the updated algorithm increased the difference in FRC between the EOPL and body plethysmography.
KW - cystic fibrosis
KW - lung clearance index
KW - lung disease
KW - pulmonary function testing
KW - ventilation inhomogeneity
UR - http://www.scopus.com/inward/record.url?scp=85186435368&partnerID=8YFLogxK
U2 - 10.1152/japplphysiol.00096.2022
DO - 10.1152/japplphysiol.00096.2022
M3 - Article
C2 - 38269412
AN - SCOPUS:85186435368
SN - 8750-7587
VL - 136
SP - 460
EP - 471
JO - Journal of Applied Physiology
JF - Journal of Applied Physiology
IS - 3
ER -