Projects per year
Abstract
This paper reports a new aspect of the Lüders-type deformation of NiTi. This is on the occurrence of lateral shear strains in a tension-induced Lüders deformation process. The phenomenon was studied by means of digital image correlation analysis. It was found that the lateral shear strains occurred in opposite directions within the Lüders band, apparently as an effort to self-accommodate the lateral displacement caused by the shear strains. The Lüders band propagation also changed from a single band mode to a branched mode when the lateral displacement, thus the in-plane bending moment, became too large. The branches, whilst having the same axial normal strain in the loading direction, were formed with opposite shear strains in double alternation between left and right of the sample and between the branches and the gaps between them, thus, to achieve the optimum self-accommodation. In addition, both the axial normal strain field and the lateral shear strain field were nonuniform after the Lüders-type deformation. These findings provide more insight and direct evidence for the explanation of the characteristics of Lüders deformation behaviour of NiTi.
Original language | English |
---|---|
Article number | 142774 |
Journal | Materials Science and Engineering A |
Volume | 839 |
DOIs | |
Publication status | Published - 6 Apr 2022 |
Fingerprint
Dive into the research topics of 'Shear strain evolution during tension-induced Lüders-type deformation of polycrystalline NiTi plates'. Together they form a unique fingerprint.Projects
- 2 Finished
-
Approaching near-ideal strength for bulk amorphous metals
Liu, Y. (Investigator 01) & Han, X. (Investigator 02)
ARC Australian Research Council
15/06/19 → 31/12/23
Project: Research
-
Transformation Dual Phase Synergy for Unprecedented Superelasticity
Liu, Y. (Investigator 01), Liu, Z. (Investigator 02), Wang, Y. (Investigator 03) & Hao, S. (Investigator 04)
ARC Australian Research Council
15/04/18 → 31/12/22
Project: Research