Shear-slip induced seismic activity in underground mines: a case study in Western Australia

Marc Reimnitz

Research output: ThesisMaster's Thesis

203 Downloads (Pure)

Abstract

Mining induced seismic activity and rockbursting are critical concerns for many underground operations. Seismic activity may arise from the crushing of highly stressed volumes of rock around mine openings or from shear motion on planes of weakness. Shear-slip on major planes of weakness such as faults, shear zones and weak contacts has long been recognized as a dominant mode of failure in underground mines. In certain circumstances, it can generate large seismic events and induce substantial damage to mine openings. The Big Bell Gold mine began experiencing major seismic activity and resultant damage in 1999. Several seismic events were recorded around the second graphitic shear between April 2000 and February 2002. It is likely that the seismic activity occurred as a result of the low strength of the shear structure combined with the high level of mining induced stresses. The stability of the second graphitic shear was examined in order to gain a better understanding of the causes and mechanisms of the seismic activity recorded in the vicinity of the shear structure as mining advanced. The data were derived from the observation of the structure exposures, numerical modelling and seismic monitoring. The numerical modelling predictions and the interpreted seismic monitoring data were subsequently compared in order to identify potential relationships between the two. This thesis proposes the Incremental Work Density (IWD) as a measure to evaluate the relative likelihood of shear-slip induced seismic activity upon major planes of weakness. IWD is readily evaluated using numerical modelling and is calculated as the product of the average driving shear stress and change in inelastic shear deformation during a given mining increment or step. IWD is expected to correlate with shear-slip induced seismic activity in both space and time. In this thesis, IWD was applied to the case study of the second graphitic shear at the Big Bell mine.
Original languageEnglish
QualificationMasters
Publication statusUnpublished - 2004

Fingerprint

seismic activity
modeling
damage
gold mine
crushing
shear stress
shear zone
prediction
rock
thesis
seismic monitoring
exposure
monitoring data
product

Cite this

@phdthesis{43103fce6fcf443c839ef19ba2055595,
title = "Shear-slip induced seismic activity in underground mines: a case study in Western Australia",
abstract = "Mining induced seismic activity and rockbursting are critical concerns for many underground operations. Seismic activity may arise from the crushing of highly stressed volumes of rock around mine openings or from shear motion on planes of weakness. Shear-slip on major planes of weakness such as faults, shear zones and weak contacts has long been recognized as a dominant mode of failure in underground mines. In certain circumstances, it can generate large seismic events and induce substantial damage to mine openings. The Big Bell Gold mine began experiencing major seismic activity and resultant damage in 1999. Several seismic events were recorded around the second graphitic shear between April 2000 and February 2002. It is likely that the seismic activity occurred as a result of the low strength of the shear structure combined with the high level of mining induced stresses. The stability of the second graphitic shear was examined in order to gain a better understanding of the causes and mechanisms of the seismic activity recorded in the vicinity of the shear structure as mining advanced. The data were derived from the observation of the structure exposures, numerical modelling and seismic monitoring. The numerical modelling predictions and the interpreted seismic monitoring data were subsequently compared in order to identify potential relationships between the two. This thesis proposes the Incremental Work Density (IWD) as a measure to evaluate the relative likelihood of shear-slip induced seismic activity upon major planes of weakness. IWD is readily evaluated using numerical modelling and is calculated as the product of the average driving shear stress and change in inelastic shear deformation during a given mining increment or step. IWD is expected to correlate with shear-slip induced seismic activity in both space and time. In this thesis, IWD was applied to the case study of the second graphitic shear at the Big Bell mine.",
keywords = "Shear (Mechanics), Mathematical models, Rock mechanics, Gold mines and mining, Western Australia, Seismic activity, Seismic monitoring, Numerical modelling, Shear slip, Planes of weakness, Geological structures",
author = "Marc Reimnitz",
year = "2004",
language = "English",

}

Shear-slip induced seismic activity in underground mines: a case study in Western Australia. / Reimnitz, Marc.

2004.

Research output: ThesisMaster's Thesis

TY - THES

T1 - Shear-slip induced seismic activity in underground mines: a case study in Western Australia

AU - Reimnitz, Marc

PY - 2004

Y1 - 2004

N2 - Mining induced seismic activity and rockbursting are critical concerns for many underground operations. Seismic activity may arise from the crushing of highly stressed volumes of rock around mine openings or from shear motion on planes of weakness. Shear-slip on major planes of weakness such as faults, shear zones and weak contacts has long been recognized as a dominant mode of failure in underground mines. In certain circumstances, it can generate large seismic events and induce substantial damage to mine openings. The Big Bell Gold mine began experiencing major seismic activity and resultant damage in 1999. Several seismic events were recorded around the second graphitic shear between April 2000 and February 2002. It is likely that the seismic activity occurred as a result of the low strength of the shear structure combined with the high level of mining induced stresses. The stability of the second graphitic shear was examined in order to gain a better understanding of the causes and mechanisms of the seismic activity recorded in the vicinity of the shear structure as mining advanced. The data were derived from the observation of the structure exposures, numerical modelling and seismic monitoring. The numerical modelling predictions and the interpreted seismic monitoring data were subsequently compared in order to identify potential relationships between the two. This thesis proposes the Incremental Work Density (IWD) as a measure to evaluate the relative likelihood of shear-slip induced seismic activity upon major planes of weakness. IWD is readily evaluated using numerical modelling and is calculated as the product of the average driving shear stress and change in inelastic shear deformation during a given mining increment or step. IWD is expected to correlate with shear-slip induced seismic activity in both space and time. In this thesis, IWD was applied to the case study of the second graphitic shear at the Big Bell mine.

AB - Mining induced seismic activity and rockbursting are critical concerns for many underground operations. Seismic activity may arise from the crushing of highly stressed volumes of rock around mine openings or from shear motion on planes of weakness. Shear-slip on major planes of weakness such as faults, shear zones and weak contacts has long been recognized as a dominant mode of failure in underground mines. In certain circumstances, it can generate large seismic events and induce substantial damage to mine openings. The Big Bell Gold mine began experiencing major seismic activity and resultant damage in 1999. Several seismic events were recorded around the second graphitic shear between April 2000 and February 2002. It is likely that the seismic activity occurred as a result of the low strength of the shear structure combined with the high level of mining induced stresses. The stability of the second graphitic shear was examined in order to gain a better understanding of the causes and mechanisms of the seismic activity recorded in the vicinity of the shear structure as mining advanced. The data were derived from the observation of the structure exposures, numerical modelling and seismic monitoring. The numerical modelling predictions and the interpreted seismic monitoring data were subsequently compared in order to identify potential relationships between the two. This thesis proposes the Incremental Work Density (IWD) as a measure to evaluate the relative likelihood of shear-slip induced seismic activity upon major planes of weakness. IWD is readily evaluated using numerical modelling and is calculated as the product of the average driving shear stress and change in inelastic shear deformation during a given mining increment or step. IWD is expected to correlate with shear-slip induced seismic activity in both space and time. In this thesis, IWD was applied to the case study of the second graphitic shear at the Big Bell mine.

KW - Shear (Mechanics)

KW - Mathematical models

KW - Rock mechanics

KW - Gold mines and mining

KW - Western Australia

KW - Seismic activity

KW - Seismic monitoring

KW - Numerical modelling

KW - Shear slip

KW - Planes of weakness

KW - Geological structures

M3 - Master's Thesis

ER -