Projects per year
Abstract
Shallow penetrometers are devices that penetrate into and measure the properties of surficial offshore sediments via multi-phase tests involving penetration, dissipation, and rotation stages. In fine-grained soils such as silts and clays, these testing stages yield undrained strength, consolidation, and friction properties relevant to subsea pipeline and shallow foundation design. This paper describes toroid and hemiball devices of the scale for use in box-core samples and associated interpretation methods for the penetration and dissipation stages. The aim of the paper is to provide all tools needed to design and interpret these tests. New large-deformation finite element (LDFE) dissipation solutions are presented, which can be used for back-analysis of the dissipation stage. Results of an extensive laboratory proof testing exercise in kaolin clay, for both the hemiball and toroid penetrometers, are also reported. These results highlight the potential of the two devices to quickly and economically assess strength and consolidation characteristics of fine-grained sediments in box-core samples recovered to the deck of a site investigation vessel.
Original language | English |
---|---|
Pages (from-to) | 568-579 |
Number of pages | 12 |
Journal | Canadian Geotechnical Journal |
Volume | 57 |
Issue number | 4 |
DOIs | |
Publication status | Published - 1 Jan 2020 |
Fingerprint
Dive into the research topics of 'Shallow penetrometer tests: Theoretical and experimental modelling of penetration and dissipation stages'. Together they form a unique fingerprint.Projects
- 1 Finished
-
Centre of Excellence for Geotechnical Science and Engineering
Sloan, S. (Investigator 01), Cassidy, M. (Investigator 02), Randolph, M. (Investigator 03), Carter, J. (Investigator 04), Sheng, D. (Investigator 05), Indraratna, B. (Investigator 06), White, D. (Investigator 07), Krabbenhoft, K. (Investigator 08) & Gaudin, C. (Investigator 09)
ARC Australian Research Council
1/01/11 → 31/12/17
Project: Research