TY - JOUR
T1 - Seminal vesicle intrafraction motion analysed with cinematic magnetic resonance imaging
AU - Gill, Suki
AU - Dang, Kim
AU - Fox, Chris
AU - Bressel, Mathias
AU - Kron, Tomas
AU - Bergen, Noelene
AU - Ferris, Nick
AU - Owen, Rebecca
AU - Chander, Sarat
AU - Tai, Keen H.
AU - Foroudi, Farshad
N1 - Funding Information:
This study was funded by a grant from the Contributing to Australian Scholarship and Science (CASS) foundation, Australia. Presented in part at ESTRO 31, Barcelona 2012.
Publisher Copyright:
© 2014 Gill et al.; licensee BioMed Central Ltd.
PY - 2014/8/8
Y1 - 2014/8/8
N2 - Purpose: This study analyses seminal vesicle displacement relative to the prostate and in relation to treatment time. Method: A group of eleven patients undergoing prostate cancer radiotherapy were imaged with a continuous 3 T cine-MRI in the standard treatment setup position. Four images were recorded every 4 seconds for 15 minutes in the sagittal plane and every 6.5 seconds for 12 minutes in the coronal plane. The prostate gland and seminal vesicles were contoured on each MRI image. The coordinates of the centroid of the prostate and seminal vesicles on each image was analysed for displacement against time. Displacements between the 2.5 percentile and 97.5 percentile (i.e. the 2.5% trimmed range) for prostate and seminal vesicle centroid displacements were measured for 3, 5, 10 and 15 minutes time intervals in the anterior-posterior (AP), left-right (LR) and superior-inferior (SI) directions. Real time prostate and seminal vesicle displacement was compared for individual patients. Results: The 2.5% trimmed range for 3, 5, 10 and 15 minutes for the seminal vesicle centroids in the SI direction measured 4.7 mm; 5.8 mm; 6.5 mm and 7.2 mm respectively. In the AP direction, it was 4.0 mm, 4.5 mm, 6.5 mm, and 7.0 mm. In the LR direction for 3, 5 and 10 minutes; for the left seminal vesicle, it was 2.7 mm, 2.8 mm, 3.4 mm and for the right seminal vesicle, it was 3.4 mm, 3.3 mm, and 3.4 mm. The correlation between the real-time prostate and seminal vesicle displacement varied substantially between patients indicating that the relationship between prostate displacement and seminal vesicles displacement is patient specific with the majority of the patients not having a strong relationship. Conclusion: Our study shows that seminal vesicle motion increases with treatment time, and that the prostate and seminal vesicle centroids do not move in unison in real time, and that an additional margin is required for independent seminal vesicle motion if treatment localisation is to the prostate.
AB - Purpose: This study analyses seminal vesicle displacement relative to the prostate and in relation to treatment time. Method: A group of eleven patients undergoing prostate cancer radiotherapy were imaged with a continuous 3 T cine-MRI in the standard treatment setup position. Four images were recorded every 4 seconds for 15 minutes in the sagittal plane and every 6.5 seconds for 12 minutes in the coronal plane. The prostate gland and seminal vesicles were contoured on each MRI image. The coordinates of the centroid of the prostate and seminal vesicles on each image was analysed for displacement against time. Displacements between the 2.5 percentile and 97.5 percentile (i.e. the 2.5% trimmed range) for prostate and seminal vesicle centroid displacements were measured for 3, 5, 10 and 15 minutes time intervals in the anterior-posterior (AP), left-right (LR) and superior-inferior (SI) directions. Real time prostate and seminal vesicle displacement was compared for individual patients. Results: The 2.5% trimmed range for 3, 5, 10 and 15 minutes for the seminal vesicle centroids in the SI direction measured 4.7 mm; 5.8 mm; 6.5 mm and 7.2 mm respectively. In the AP direction, it was 4.0 mm, 4.5 mm, 6.5 mm, and 7.0 mm. In the LR direction for 3, 5 and 10 minutes; for the left seminal vesicle, it was 2.7 mm, 2.8 mm, 3.4 mm and for the right seminal vesicle, it was 3.4 mm, 3.3 mm, and 3.4 mm. The correlation between the real-time prostate and seminal vesicle displacement varied substantially between patients indicating that the relationship between prostate displacement and seminal vesicles displacement is patient specific with the majority of the patients not having a strong relationship. Conclusion: Our study shows that seminal vesicle motion increases with treatment time, and that the prostate and seminal vesicle centroids do not move in unison in real time, and that an additional margin is required for independent seminal vesicle motion if treatment localisation is to the prostate.
UR - http://www.scopus.com/inward/record.url?scp=84906839513&partnerID=8YFLogxK
U2 - 10.1186/1748-717X-9-174
DO - 10.1186/1748-717X-9-174
M3 - Article
C2 - 25106679
AN - SCOPUS:84906839513
SN - 1748-717X
VL - 9
SP - 1
EP - 8
JO - Radiation Oncology
JF - Radiation Oncology
IS - 1
M1 - 174
ER -