Abstract
To make sense of the visual world, we need to move our eyes to focus regions of interest on the high-resolution fovea. Eye movements, therefore, give us a way to infer mechanisms of visual processing and attention allocation. Here, we examined age-related differences in visual processing by recording eye movements from 37 children (aged 6–14 years) and 10 adults while viewing three 5-min dynamic video clips taken from child-friendly movies. The data were analyzed in two complementary ways: (a) gaze based and (b) content based. First, similarity of scanpaths within and across age groups was examined using three different measures of variance (dispersion, clusters, and distance from center). Second, content-based models of fixation were compared to determine which of these provided the best account of our dynamic data. We found that the variance in eye movements decreased as a function of age, suggesting common attentional orienting. Comparison of the different models revealed that a model that relies on faces generally performed better than the other models tested, even for the youngest age group (<10 years). However, the best predictor of a given participant's eye movements was the average of all other participants’ eye movements both within the same age group and in different age groups. These findings have implications for understanding how children attend to visual information and highlight similarities in viewing strategies across development.
Original language | English |
---|---|
Pages (from-to) | 293-309 |
Number of pages | 17 |
Journal | Journal of Experimental Child Psychology |
Volume | 166 |
DOIs | |
Publication status | Published - 1 Feb 2018 |