Self-consistent Bulge/Disk/Halo Galaxy Dynamical Modeling Using Integral Field Kinematics

D. S. Taranu, D. Obreschkow, J. J. Dubinski, L. M.R. Fogarty, J. van de Sande, B. Catinella, L. Cortese, A. Moffett, A. S.G. Robotham, J. T. Allen, J. Bland-Hawthorn, J. J. Bryant, M. Colless, S. M. Croom, F. D’Eugenio, R. L. Davies, M. J. Drinkwater, S. P. Driver, M. Goodwin, I. S. Konstantopoulos & 9 others J. S. Lawrence, R. López-Sánchez, N. P.F. Lorente, A. M. Medling, J. R. Mould, M. S. Owers, C. Power, S. N. Richards, C. Tonini

Research output: Contribution to journalArticle

Abstract

We introduce a method for modeling disk galaxies designed to take full advantage of data from integral field spectroscopy (IFS). The method fits equilibrium models to simultaneously reproduce the surface brightness, rotation, and velocity dispersion profiles of a galaxy. The models are fully self-consistent 6D distribution functions for a galaxy with a Sérsic profile stellar bulge, exponential disk, and parametric dark-matter halo, generated by an updated version of GalactICS. By creating realistic flux-weighted maps of the kinematic moments (flux, mean velocity, and dispersion), we simultaneously fit photometric and spectroscopic data using both maximum-likelihood and Bayesian (MCMC) techniques. We apply the method to a GAMA spiral galaxy (G79635) with kinematics from the SAMI Galaxy Survey and deep g- and r-band photometry from the VST-KiDS survey, comparing parameter constraints with those from traditional 2D bulge–disk decomposition. Our method returns broadly consistent results for shared parameters while constraining the mass-to-light ratios of stellar components and reproducing the H I-inferred circular velocity well beyond the limits of the SAMI data. Although the method is tailored for fitting integral field kinematic data, it can use other dynamical constraints like central fiber dispersions and H I circular velocities, and is well-suited for modeling galaxies with a combination of deep imaging and H I and/or optical spectra (resolved or otherwise). Our implementation (MagRite) is computationally efficient and can generate well-resolved models and kinematic maps in under a minute on modern processors.

LanguageEnglish
Article number70
JournalAstrophysical Journal
Volume850
Issue number1
DOIs
StatePublished - 17 Nov 2017

Fingerprint

halos
kinematics
galaxies
modeling
mass to light ratios
disk galaxies
spiral galaxies
profiles
photometry
central processing units
optical spectrum
dark matter
brightness
distribution functions
moments
decomposition
spectroscopy
fibers
method
parameter

Cite this

Taranu, D. S., Obreschkow, D., Dubinski, J. J., Fogarty, L. M. R., van de Sande, J., Catinella, B., ... Tonini, C. (2017). Self-consistent Bulge/Disk/Halo Galaxy Dynamical Modeling Using Integral Field Kinematics. Astrophysical Journal, 850(1), [70]. DOI: 10.3847/1538-4357/aa9221
Taranu, D. S. ; Obreschkow, D. ; Dubinski, J. J. ; Fogarty, L. M.R. ; van de Sande, J. ; Catinella, B. ; Cortese, L. ; Moffett, A. ; Robotham, A. S.G. ; Allen, J. T. ; Bland-Hawthorn, J. ; Bryant, J. J. ; Colless, M. ; Croom, S. M. ; D’Eugenio, F. ; Davies, R. L. ; Drinkwater, M. J. ; Driver, S. P. ; Goodwin, M. ; Konstantopoulos, I. S. ; Lawrence, J. S. ; López-Sánchez, R. ; Lorente, N. P.F. ; Medling, A. M. ; Mould, J. R. ; Owers, M. S. ; Power, C. ; Richards, S. N. ; Tonini, C./ Self-consistent Bulge/Disk/Halo Galaxy Dynamical Modeling Using Integral Field Kinematics. In: Astrophysical Journal. 2017 ; Vol. 850, No. 1.
@article{7c028cc7a43d444188095a4ccad1110b,
title = "Self-consistent Bulge/Disk/Halo Galaxy Dynamical Modeling Using Integral Field Kinematics",
abstract = "We introduce a method for modeling disk galaxies designed to take full advantage of data from integral field spectroscopy (IFS). The method fits equilibrium models to simultaneously reproduce the surface brightness, rotation, and velocity dispersion profiles of a galaxy. The models are fully self-consistent 6D distribution functions for a galaxy with a S{\'e}rsic profile stellar bulge, exponential disk, and parametric dark-matter halo, generated by an updated version of GalactICS. By creating realistic flux-weighted maps of the kinematic moments (flux, mean velocity, and dispersion), we simultaneously fit photometric and spectroscopic data using both maximum-likelihood and Bayesian (MCMC) techniques. We apply the method to a GAMA spiral galaxy (G79635) with kinematics from the SAMI Galaxy Survey and deep g- and r-band photometry from the VST-KiDS survey, comparing parameter constraints with those from traditional 2D bulge–disk decomposition. Our method returns broadly consistent results for shared parameters while constraining the mass-to-light ratios of stellar components and reproducing the H I-inferred circular velocity well beyond the limits of the SAMI data. Although the method is tailored for fitting integral field kinematic data, it can use other dynamical constraints like central fiber dispersions and H I circular velocities, and is well-suited for modeling galaxies with a combination of deep imaging and H I and/or optical spectra (resolved or otherwise). Our implementation (MagRite) is computationally efficient and can generate well-resolved models and kinematic maps in under a minute on modern processors.",
keywords = "Galaxies: fundamental parameters, Galaxies: spiral, Galaxies: structure, Methods: data analysis",
author = "Taranu, {D. S.} and D. Obreschkow and Dubinski, {J. J.} and Fogarty, {L. M.R.} and {van de Sande}, J. and B. Catinella and L. Cortese and A. Moffett and Robotham, {A. S.G.} and Allen, {J. T.} and J. Bland-Hawthorn and Bryant, {J. J.} and M. Colless and Croom, {S. M.} and F. D’Eugenio and Davies, {R. L.} and Drinkwater, {M. J.} and Driver, {S. P.} and M. Goodwin and Konstantopoulos, {I. S.} and Lawrence, {J. S.} and R. L{\'o}pez-S{\'a}nchez and Lorente, {N. P.F.} and Medling, {A. M.} and Mould, {J. R.} and Owers, {M. S.} and C. Power and Richards, {S. N.} and C. Tonini",
year = "2017",
month = "11",
day = "17",
doi = "10.3847/1538-4357/aa9221",
language = "English",
volume = "850",
journal = "The Astrophysical Journal",
issn = "0004-637X",
publisher = "IOP Publishing",
number = "1",

}

Taranu, DS, Obreschkow, D, Dubinski, JJ, Fogarty, LMR, van de Sande, J, Catinella, B, Cortese, L, Moffett, A, Robotham, ASG, Allen, JT, Bland-Hawthorn, J, Bryant, JJ, Colless, M, Croom, SM, D’Eugenio, F, Davies, RL, Drinkwater, MJ, Driver, SP, Goodwin, M, Konstantopoulos, IS, Lawrence, JS, López-Sánchez, R, Lorente, NPF, Medling, AM, Mould, JR, Owers, MS, Power, C, Richards, SN & Tonini, C 2017, 'Self-consistent Bulge/Disk/Halo Galaxy Dynamical Modeling Using Integral Field Kinematics' Astrophysical Journal, vol 850, no. 1, 70. DOI: 10.3847/1538-4357/aa9221

Self-consistent Bulge/Disk/Halo Galaxy Dynamical Modeling Using Integral Field Kinematics. / Taranu, D. S.; Obreschkow, D.; Dubinski, J. J.; Fogarty, L. M.R.; van de Sande, J.; Catinella, B.; Cortese, L.; Moffett, A.; Robotham, A. S.G.; Allen, J. T.; Bland-Hawthorn, J.; Bryant, J. J.; Colless, M.; Croom, S. M.; D’Eugenio, F.; Davies, R. L.; Drinkwater, M. J.; Driver, S. P.; Goodwin, M.; Konstantopoulos, I. S.; Lawrence, J. S.; López-Sánchez, R.; Lorente, N. P.F.; Medling, A. M.; Mould, J. R.; Owers, M. S.; Power, C.; Richards, S. N.; Tonini, C.

In: Astrophysical Journal, Vol. 850, No. 1, 70, 17.11.2017.

Research output: Contribution to journalArticle

TY - JOUR

T1 - Self-consistent Bulge/Disk/Halo Galaxy Dynamical Modeling Using Integral Field Kinematics

AU - Taranu,D. S.

AU - Obreschkow,D.

AU - Dubinski,J. J.

AU - Fogarty,L. M.R.

AU - van de Sande,J.

AU - Catinella,B.

AU - Cortese,L.

AU - Moffett,A.

AU - Robotham,A. S.G.

AU - Allen,J. T.

AU - Bland-Hawthorn,J.

AU - Bryant,J. J.

AU - Colless,M.

AU - Croom,S. M.

AU - D’Eugenio,F.

AU - Davies,R. L.

AU - Drinkwater,M. J.

AU - Driver,S. P.

AU - Goodwin,M.

AU - Konstantopoulos,I. S.

AU - Lawrence,J. S.

AU - López-Sánchez,R.

AU - Lorente,N. P.F.

AU - Medling,A. M.

AU - Mould,J. R.

AU - Owers,M. S.

AU - Power,C.

AU - Richards,S. N.

AU - Tonini,C.

PY - 2017/11/17

Y1 - 2017/11/17

N2 - We introduce a method for modeling disk galaxies designed to take full advantage of data from integral field spectroscopy (IFS). The method fits equilibrium models to simultaneously reproduce the surface brightness, rotation, and velocity dispersion profiles of a galaxy. The models are fully self-consistent 6D distribution functions for a galaxy with a Sérsic profile stellar bulge, exponential disk, and parametric dark-matter halo, generated by an updated version of GalactICS. By creating realistic flux-weighted maps of the kinematic moments (flux, mean velocity, and dispersion), we simultaneously fit photometric and spectroscopic data using both maximum-likelihood and Bayesian (MCMC) techniques. We apply the method to a GAMA spiral galaxy (G79635) with kinematics from the SAMI Galaxy Survey and deep g- and r-band photometry from the VST-KiDS survey, comparing parameter constraints with those from traditional 2D bulge–disk decomposition. Our method returns broadly consistent results for shared parameters while constraining the mass-to-light ratios of stellar components and reproducing the H I-inferred circular velocity well beyond the limits of the SAMI data. Although the method is tailored for fitting integral field kinematic data, it can use other dynamical constraints like central fiber dispersions and H I circular velocities, and is well-suited for modeling galaxies with a combination of deep imaging and H I and/or optical spectra (resolved or otherwise). Our implementation (MagRite) is computationally efficient and can generate well-resolved models and kinematic maps in under a minute on modern processors.

AB - We introduce a method for modeling disk galaxies designed to take full advantage of data from integral field spectroscopy (IFS). The method fits equilibrium models to simultaneously reproduce the surface brightness, rotation, and velocity dispersion profiles of a galaxy. The models are fully self-consistent 6D distribution functions for a galaxy with a Sérsic profile stellar bulge, exponential disk, and parametric dark-matter halo, generated by an updated version of GalactICS. By creating realistic flux-weighted maps of the kinematic moments (flux, mean velocity, and dispersion), we simultaneously fit photometric and spectroscopic data using both maximum-likelihood and Bayesian (MCMC) techniques. We apply the method to a GAMA spiral galaxy (G79635) with kinematics from the SAMI Galaxy Survey and deep g- and r-band photometry from the VST-KiDS survey, comparing parameter constraints with those from traditional 2D bulge–disk decomposition. Our method returns broadly consistent results for shared parameters while constraining the mass-to-light ratios of stellar components and reproducing the H I-inferred circular velocity well beyond the limits of the SAMI data. Although the method is tailored for fitting integral field kinematic data, it can use other dynamical constraints like central fiber dispersions and H I circular velocities, and is well-suited for modeling galaxies with a combination of deep imaging and H I and/or optical spectra (resolved or otherwise). Our implementation (MagRite) is computationally efficient and can generate well-resolved models and kinematic maps in under a minute on modern processors.

KW - Galaxies: fundamental parameters

KW - Galaxies: spiral

KW - Galaxies: structure

KW - Methods: data analysis

UR - http://www.scopus.com/inward/record.url?scp=85038567386&partnerID=8YFLogxK

U2 - 10.3847/1538-4357/aa9221

DO - 10.3847/1538-4357/aa9221

M3 - Article

VL - 850

JO - The Astrophysical Journal

T2 - The Astrophysical Journal

JF - The Astrophysical Journal

SN - 0004-637X

IS - 1

M1 - 70

ER -

Taranu DS, Obreschkow D, Dubinski JJ, Fogarty LMR, van de Sande J, Catinella B et al. Self-consistent Bulge/Disk/Halo Galaxy Dynamical Modeling Using Integral Field Kinematics. Astrophysical Journal. 2017 Nov 17;850(1). 70. Available from, DOI: 10.3847/1538-4357/aa9221