Projects per year
Abstract
The selective formation of either oxidized or carbonized features into 2.5 µm thick porous silicon (PS) films using laser writing at a wavelength of 405 nm is demonstrated. Oxidized features are formed in air while carbonized features are achieved during the flow of propane at 600 sccm. Voids which have been previously associated with the use of propane are not observed, largely due to the rapid heating and high flow rates achieved in the experiment. Carbonized regions with feature widths down to 1.8 µm are achieved and chemical resistance to both hydrofluoric acid and potassium hydroxide is demonstrated. Once carbonized regions are formed, the surrounding areas can be overwritten in air to convert the surrounding regions into oxidized PS allowing films to be created with as‐fabricated, oxidized and carbonized regions. Energy dispersive X‐ray and Raman analysis confirms the presence of carbon within the written structures. At high optical powers, cracking around the carbonized features is observed which is attributed to a contraction of the film. Such cracking is not observed during selective oxidation of features. This work significantly enhances the ability to engineer and pattern the composition of PS films enabling selective control of the material's properties and functionality.
Original language | English |
---|---|
Article number | 1800334 |
Pages (from-to) | 1-7 |
Number of pages | 7 |
Journal | Advanced Materials Technologies |
Volume | 4 |
Issue number | 1 |
Early online date | 21 Oct 2018 |
DOIs | |
Publication status | Published - 21 Jan 2019 |
Fingerprint
Dive into the research topics of 'Selective Oxidation and Carbonization by Laser Writing into Porous Silicon'. Together they form a unique fingerprint.Projects
- 1 Finished
-
A new technology platform for high speed, high sensitivity thermal imaging
Keating, A. (Investigator 01), Parish, G. (Investigator 02), Dell, J. (Investigator 03) & Andrews, G. (Investigator 04)
ARC Australian Research Council
1/01/17 → 30/04/20
Project: Research