Projects per year
Abstract
Delay embedding methods are a staple tool in the field of time series analysis and prediction. However, the selection of embedding parameters can have a big impact on the resulting analysis. This has led to the creation of a large number of methods to optimize the selection of parameters such as embedding lag. This paper aims to provide a comprehensive overview of the fundamentals of embedding theory for readers who are new to the subject. We outline a collection of existing methods for selecting embedding lag in both uniform and non-uniform delay embedding cases. Highlighting the poor dynamical explainability of existing methods of selecting non-uniform lags, we provide an alternative method of selecting embedding lags that includes a mixture of both dynamical and topological arguments. The proposed method, Significant Times on Persistent Strands (SToPS), uses persistent homology to construct a characteristic time spectrum that quantifies the relative dynamical significance of each time lag. We test our method on periodic, chaotic, and fast-slow time series and find that our method performs similar to existing automated non-uniform embedding methods. Additionally, n-step predictors trained on embeddings constructed with SToPS were found to outperform other embedding methods when predicting fast-slow time series.
Original language | English |
---|---|
Article number | 032101 |
Journal | Chaos |
Volume | 33 |
Issue number | 3 |
DOIs | |
Publication status | Published - Mar 2023 |
Projects
- 2 Active
-
TSuNAMi: Time Series Network Animal Modelling
Walker, D., Small, M., Correa, D. & Blache, D.
1/01/20 → 31/08/23
Project: Research
-
ARC Training Centre for Transforming Maintenance through Data Science
Rohl, A., Small, M., Hodkiewicz, M., Loxton, R., O'Halloran, K., Tan, T., Calo, V., Reynolds, M., Liu, W., While, R., French, T., Cripps, E. & Cardell-Oliver, R.
1/01/19 → 31/12/23
Project: Research