Seiches Around the Shetland Islands

D. T. Pugh, P. L. Woodworth, Sarath Wijeratne

Research output: Contribution to journalReview article

Abstract

Sea level records have been obtained from a dozen tide gauges deployed around the Shetland Islands, and the high-frequency components of each record have been analysed to determine how the amplitudes and periods of seiches vary from place to place. We have found that seiches occur almost everywhere, although with different periods at different locations, and sometimes with amplitudes exceeding several decimetres. Spectral analysis shows that two or more modes of seiching are present at some sites. The study attempts to explain, with the help of a numerical model, why seiches with particular periods are observed at each location, and what forcings are responsible for them. In particular, we have revisited an earlier study of seiches on the east coast of Shetland by Cartwright and Young (Proc R Soc Lond A 338:111–128, 1974) and find no evidence to support the theory that they proposed for their generation. In addition, we have investigated how often and why the largest seiche events occur at Lerwick (with trough-to-crest wave heights of about 1 m), taking advantage of its long sea level record. Seiches (and other types of high-frequency sea level variability) are often ignored in studies of sea level changes and their coastal impacts. And yet they can be large enough to contribute significantly to the extreme sea levels that have major impacts on the coast. Therefore, our Shetland research serves as a case study of the need to have a fuller understanding of the climatology of seiches for the whole world coastline.
Original languageEnglish
Number of pages30
JournalPure and Applied Geophysics
Publication statusPublished - 17 Jan 2020

Fingerprint

seiche
Sea level
sea level
coasts
Coastal zones
Tide gages
Climatology
coast
climatology
tides
troughs
Spectrum analysis
spectrum analysis
Numerical models
tide gauge
wave height
sea level change
spectral analysis
trough

Cite this

@article{bc9e68f779254a6a87c85c4178a531e5,
title = "Seiches Around the Shetland Islands",
abstract = "Sea level records have been obtained from a dozen tide gauges deployed around the Shetland Islands, and the high-frequency components of each record have been analysed to determine how the amplitudes and periods of seiches vary from place to place. We have found that seiches occur almost everywhere, although with different periods at different locations, and sometimes with amplitudes exceeding several decimetres. Spectral analysis shows that two or more modes of seiching are present at some sites. The study attempts to explain, with the help of a numerical model, why seiches with particular periods are observed at each location, and what forcings are responsible for them. In particular, we have revisited an earlier study of seiches on the east coast of Shetland by Cartwright and Young (Proc R Soc Lond A 338:111–128, 1974) and find no evidence to support the theory that they proposed for their generation. In addition, we have investigated how often and why the largest seiche events occur at Lerwick (with trough-to-crest wave heights of about 1 m), taking advantage of its long sea level record. Seiches (and other types of high-frequency sea level variability) are often ignored in studies of sea level changes and their coastal impacts. And yet they can be large enough to contribute significantly to the extreme sea levels that have major impacts on the coast. Therefore, our Shetland research serves as a case study of the need to have a fuller understanding of the climatology of seiches for the whole world coastline.",
author = "Pugh, {D. T.} and Woodworth, {P. L.} and Sarath Wijeratne",
year = "2020",
month = "1",
day = "17",
language = "English",
journal = "Pure and Applied Geophysics",
issn = "0033-4553",
publisher = "Springer Basel AG",

}

Seiches Around the Shetland Islands. / Pugh, D. T.; Woodworth, P. L.; Wijeratne, Sarath.

In: Pure and Applied Geophysics, 17.01.2020.

Research output: Contribution to journalReview article

TY - JOUR

T1 - Seiches Around the Shetland Islands

AU - Pugh, D. T.

AU - Woodworth, P. L.

AU - Wijeratne, Sarath

PY - 2020/1/17

Y1 - 2020/1/17

N2 - Sea level records have been obtained from a dozen tide gauges deployed around the Shetland Islands, and the high-frequency components of each record have been analysed to determine how the amplitudes and periods of seiches vary from place to place. We have found that seiches occur almost everywhere, although with different periods at different locations, and sometimes with amplitudes exceeding several decimetres. Spectral analysis shows that two or more modes of seiching are present at some sites. The study attempts to explain, with the help of a numerical model, why seiches with particular periods are observed at each location, and what forcings are responsible for them. In particular, we have revisited an earlier study of seiches on the east coast of Shetland by Cartwright and Young (Proc R Soc Lond A 338:111–128, 1974) and find no evidence to support the theory that they proposed for their generation. In addition, we have investigated how often and why the largest seiche events occur at Lerwick (with trough-to-crest wave heights of about 1 m), taking advantage of its long sea level record. Seiches (and other types of high-frequency sea level variability) are often ignored in studies of sea level changes and their coastal impacts. And yet they can be large enough to contribute significantly to the extreme sea levels that have major impacts on the coast. Therefore, our Shetland research serves as a case study of the need to have a fuller understanding of the climatology of seiches for the whole world coastline.

AB - Sea level records have been obtained from a dozen tide gauges deployed around the Shetland Islands, and the high-frequency components of each record have been analysed to determine how the amplitudes and periods of seiches vary from place to place. We have found that seiches occur almost everywhere, although with different periods at different locations, and sometimes with amplitudes exceeding several decimetres. Spectral analysis shows that two or more modes of seiching are present at some sites. The study attempts to explain, with the help of a numerical model, why seiches with particular periods are observed at each location, and what forcings are responsible for them. In particular, we have revisited an earlier study of seiches on the east coast of Shetland by Cartwright and Young (Proc R Soc Lond A 338:111–128, 1974) and find no evidence to support the theory that they proposed for their generation. In addition, we have investigated how often and why the largest seiche events occur at Lerwick (with trough-to-crest wave heights of about 1 m), taking advantage of its long sea level record. Seiches (and other types of high-frequency sea level variability) are often ignored in studies of sea level changes and their coastal impacts. And yet they can be large enough to contribute significantly to the extreme sea levels that have major impacts on the coast. Therefore, our Shetland research serves as a case study of the need to have a fuller understanding of the climatology of seiches for the whole world coastline.

M3 - Review article

JO - Pure and Applied Geophysics

JF - Pure and Applied Geophysics

SN - 0033-4553

ER -