Projects per year
Abstract
The purpose of this study is to explore the conditions in which trenches form beneath oscillating cylinders – such as pipelines, cables or idealised chains – close to the seabed. Experiments are conducted by oscillating a circular cylinder in a direction normal to an initially flat sandy bed. Across a relatively wide parameter space, the transport patterns and trench geometries reveal three transport regimes that are linked to vortex dynamics and depend primarily on the ratio of oscillation amplitude to cylinder diameter (KC number). For KC≲4 sediment motion results in bedload transport that is symmetric about the cylinder centreline. This leads to the formation of two parallel trenches with a prominent ridge forming directly beneath the cylinder. For 4≲KC≲9 sediment motion occurs via localised transport events, which are associated with the motion of vortices shed from the cylinder. These transport events are irregular but occur on both sides of the cylinder and lead to the formation of a symmetric trench geometry. For 9≲KC≲12 the sediment motion is characterised by localised transport events and asymmetric bedload transport driven by overall vortex dynamics. In terms of trench size, the maximum (equilibrium) depth is found to increase with KC and a mobility number (ψ) defined in terms of the maximum cylinder velocity. The initial rate of trench development also increases with KC number and ψ with an additional dependency on the cylinder β number. The cylinder motions required to initiate trenching are predicted well using continuity arguments and an oscillatory boundary layer assumption, provided the KC number and minimum gap between the cylinder and the bed are relatively small. The findings in this study provide insight into the mechanisms and prediction of trench formation. In particular, this study reveals that significant trenches can form in sandy seabeds solely due to fluid flow induced by pipeline/cable/chain motion without direct seabed contact, which has implications for structural fatigue.
Original language | English |
---|---|
Pages (from-to) | 395-410 |
Number of pages | 16 |
Journal | Coastal Engineering |
Volume | 140 |
DOIs | |
Publication status | Published - 1 Oct 2018 |
Fingerprint
Dive into the research topics of 'Sediment transport and trench development beneath a cylinder oscillating normal to a sandy seabed'. Together they form a unique fingerprint.Projects
- 1 Finished
-
ARC ITRH for Offshore Floating Facilities
Watson, P. (Investigator 01), Cassidy, M. (Investigator 02), Efthymiou, M. (Investigator 03), Ivey, G. (Investigator 04), Jones, N. (Investigator 05), Cheng, L. (Investigator 06), Draper, S. (Investigator 07), Zhao, M. (Investigator 08), Randolph, M. (Investigator 09), Gaudin, C. (Investigator 10), O'Loughlin, C. (Investigator 11), Hodkiewicz, M. (Investigator 12), Cripps, E. (Investigator 13), Zhao, W. (Investigator 14), Wolgamot, H. (Investigator 15), White, D. (Investigator 16), Doherty, J. (Investigator 17), Taylor, P. (Investigator 18), Stanier, S. (Investigator 19) & Gourvenec, S. (Investigator 20)
ARC Australian Research Council
1/01/14 → 30/12/21
Project: Research