Abstract
We present results of three wide-band directed searches for continuous gravitational waves from 15 young supernova remnants in the first half of the third Advanced LIGO and Virgo observing run. We use three search pipelines with distinct signal models and methods of identifying noise artifacts. Without ephemerides of these sources, the searches are conducted over a fRequency band spanning from 10 to 2 kHz. We find no evidence of continuous gravitational radiation from these sources. We set upper limits on the intrinsic signal strain at 95% confidence level in sample subbands, estimate the sensitivity in the full band, and derive the corresponding constraints on the fiducial neutron star ellipticity and r-mode amplitude. The best 95% confidence constraints placed on the signal strain are 7.7 × 10-26 and 7.8 × 10-26 near 200 Hz for the supernova remnants G39.2-0.3 and G65.7+1.2, respectively. The most stringent constraints on the ellipticity and r-mode amplitude reach ≲10-7 and ≲ 10-5, respectively, at frequencies above ∼400 Hz for the closest supernova remnant G266.2-1.2/Vela Jr.
Original language | English |
---|---|
Article number | 80 |
Journal | Astrophysical Journal |
Volume | 921 |
Issue number | 1 |
DOIs | |
Publication status | Published - 1 Nov 2021 |
Access to Document
Other files and links
Fingerprint
Dive into the research topics of 'Searches for continuous gravitational waves from young supernova remnants in the early third observing run of advanced LIGO and Virgo'. Together they form a unique fingerprint.Cite this
- APA
- Author
- BIBTEX
- Harvard
- Standard
- RIS
- Vancouver
}
In: Astrophysical Journal, Vol. 921, No. 1, 80, 01.11.2021.
Research output: Contribution to journal › Article › peer-review
TY - JOUR
T1 - Searches for continuous gravitational waves from young supernova remnants in the early third observing run of advanced LIGO and Virgo
AU - LIGO Scientific Collaboration and Virgo Collaborations
AU - Abbott, R.
AU - Abbott, T. D.
AU - Abraham, S.
AU - Acernese, F.
AU - Ackley, K.
AU - Adams, A.
AU - Adams, C.
AU - Adhikari, R. X.
AU - Adya, V. B.
AU - Affeldt, C.
AU - Agarwal, D.
AU - Agathos, M.
AU - Agatsuma, K.
AU - Aggarwal, N.
AU - Aguiar, O. D.
AU - Aiello, L.
AU - Ain, A.
AU - Ajith, P.
AU - Akutsu, T.
AU - Aleman, K. M.
AU - Allen, G.
AU - Allocca, A.
AU - Altin, P. A.
AU - Amato, A.
AU - Anand, S.
AU - Ananyeva, A.
AU - Anderson, S. B.
AU - Anderson, W. G.
AU - Ando, M.
AU - Angelova, S. V.
AU - Ansoldi, S.
AU - Antelis, J. M.
AU - Antier, S.
AU - Appert, S.
AU - Arai, Koya
AU - Arai, Koji
AU - Arai, Y.
AU - Araki, S.
AU - Araya, A.
AU - Araya, M. C.
AU - Areeda, J. S.
AU - Arène, M.
AU - Aritomi, N.
AU - Arnaud, N.
AU - Aronson, S. M.
AU - Arun, K. G.
AU - Asada, H.
AU - Asali, Y.
AU - Ashton, G.
AU - Aso, Y.
AU - Aston, S. M.
AU - Astone, P.
AU - Aubin, F.
AU - Aufmuth, P.
AU - AultONeal, K.
AU - Austin, C.
AU - Babak, S.
AU - Badaracco, F.
AU - Bader, M. K.M.
AU - Bae, S.
AU - Bae, Y.
AU - Baer, A. M.
AU - Bagnasco, S.
AU - Bai, Y.
AU - Baiotti, L.
AU - Baird, J.
AU - Bajpai, R.
AU - Ball, M.
AU - Ballardin, G.
AU - Ballmer, S. W.
AU - Bals, M.
AU - Balsamo, A.
AU - Baltus, G.
AU - Banagiri, S.
AU - Bankar, D.
AU - Bankar, R. S.
AU - Barayoga, J. C.
AU - Barbieri, C.
AU - Barish, B. C.
AU - Barker, D.
AU - Barneo, P.
AU - Barone, F.
AU - Barr, B.
AU - Barsotti, L.
AU - Barsuglia, M.
AU - Barta, D.
AU - Bartlett, J.
AU - Barton, M. A.
AU - Bartos, I.
AU - Bassiri, R.
AU - Basti, A.
AU - Bawaj, M.
AU - Bayley, J. C.
AU - Baylor, A. C.
AU - Bazzan, M.
AU - Bécsy, B.
AU - Bedakihale, V. M.
AU - Bejger, M.
AU - Belahcene, I.
AU - Benedetto, V.
AU - Beniwal, D.
AU - Benjamin, M. G.
AU - Bennett, T. F.
AU - Bentley, J. D.
AU - BenYaala, M.
AU - Bergamin, F.
AU - Berger, B. K.
AU - Bernuzzi, S.
AU - Bersanetti, D.
AU - Bertolini, A.
AU - Betzwieser, J.
AU - Bhandare, R.
AU - Bhandari, A. V.
AU - Bhattacharjee, D.
AU - Bhaumik, S.
AU - Bidler, J.
AU - Bilenko, I. A.
AU - Billingsley, G.
AU - Birney, R.
AU - Birnholtz, O.
AU - Biscans, S.
AU - Bischi, M.
AU - Biscoveanu, S.
AU - Bisht, A.
AU - Biswas, B.
AU - Bitossi, M.
AU - Bizouard, M. A.
AU - Blackburn, J. K.
AU - Blackman, J.
AU - Blair, C. D.
AU - Blair, D. G.
AU - Blair, R. M.
AU - Bobba, F.
AU - Bode, N.
AU - Boer, M.
AU - Bogaert, G.
AU - Boldrini, M.
AU - Bondu, F.
AU - Bonilla, E.
AU - Bonnand, R.
AU - Booker, P.
AU - Boom, B. A.
AU - Bork, R.
AU - Boschi, V.
AU - Bose, N.
AU - Bose, S.
AU - Bossilkov, V.
AU - Boudart, V.
AU - Bouffanais, Y.
AU - Bozzi, A.
AU - Bradaschia, C.
AU - Brady, P. R.
AU - Bramley, A.
AU - Branch, A.
AU - Branchesi, M.
AU - Brau, J. E.
AU - Breschi, M.
AU - Briant, T.
AU - Briggs, J. H.
AU - Brillet, A.
AU - Brinkmann, M.
AU - Brockill, P.
AU - Brooks, A. F.
AU - Brooks, J.
AU - Brown, D. D.
AU - Brunett, S.
AU - Bruno, G.
AU - Bruntz, R.
AU - Bryant, J.
AU - Buikema, A.
AU - Bulik, T.
AU - Bulten, H. J.
AU - Buonanno, A.
AU - Buscicchio, R.
AU - Buskulic, D.
AU - Byer, R. L.
AU - Cadonati, L.
AU - Caesar, M.
AU - Cagnoli, G.
AU - Cahillane, C.
AU - Cain, H. W.
AU - Bustillo, J. Calderón
AU - Callaghan, J. D.
AU - Callister, T. A.
AU - Calloni, E.
AU - Camp, J. B.
AU - Canepa, M.
AU - Cannavacciuolo, M.
AU - Cannon, K. C.
AU - Cao, H.
AU - Cao, J.
AU - Cao, Z.
AU - Capocasa, E.
AU - Capote, E.
AU - Carapella, G.
AU - Carbognani, F.
AU - Carlin, J. B.
AU - Carney, M. F.
AU - Carpinelli, M.
AU - Carullo, G.
AU - Carver, T. L.
AU - Diaz, J. Casanueva
AU - Casentini, C.
AU - Castaldi, G.
AU - Caudill, S.
AU - Cavaglià, M.
AU - Cavalier, F.
AU - Cavalieri, R.
AU - Cella, G.
AU - Cerdá-Durán, P.
AU - Cesarini, E.
AU - Chaibi, W.
AU - Chakravarti, K.
AU - Champion, B.
AU - Chan, C. H.
AU - Chan, C.
AU - Chan, C. L.
AU - Chan, M.
AU - Chandra, K.
AU - Chanial, P.
AU - Chao, S.
AU - Charlton, P.
AU - Chase, E. A.
AU - Chassande-Mottin, E.
AU - Chatterjee, D.
AU - Chaturvedi, M.
AU - Chen, A.
AU - Chen, C.
AU - Chen, H. Y.
AU - Chen, J.
AU - Chen, K.
AU - Chen, X.
AU - Chen, Y. B.
AU - Chen, Y. R.
AU - Choudhary, R. K.
AU - Chu, Q.
AU - Coward, D. M.
AU - Danilishin, S. L.
AU - Degallaix, J.
AU - Jones, A. W.
AU - Ju, L.
AU - Kaur, T.
AU - Kovalam, M.
AU - Liu, J.
AU - McCann, J. J.
AU - Page, M. A.
AU - Slaven-Blair, T. J.
AU - van Heijningen, J. V.
AU - Zhao, C.
AU - Zhu, X. J.
N1 - Publisher Copyright: © 2021 Institute of Physics Publishing. All rights reserved.
PY - 2021/11/1
Y1 - 2021/11/1
N2 - We present results of three wide-band directed searches for continuous gravitational waves from 15 young supernova remnants in the first half of the third Advanced LIGO and Virgo observing run. We use three search pipelines with distinct signal models and methods of identifying noise artifacts. Without ephemerides of these sources, the searches are conducted over a fRequency band spanning from 10 to 2 kHz. We find no evidence of continuous gravitational radiation from these sources. We set upper limits on the intrinsic signal strain at 95% confidence level in sample subbands, estimate the sensitivity in the full band, and derive the corresponding constraints on the fiducial neutron star ellipticity and r-mode amplitude. The best 95% confidence constraints placed on the signal strain are 7.7 × 10-26 and 7.8 × 10-26 near 200 Hz for the supernova remnants G39.2-0.3 and G65.7+1.2, respectively. The most stringent constraints on the ellipticity and r-mode amplitude reach ≲10-7 and ≲ 10-5, respectively, at frequencies above ∼400 Hz for the closest supernova remnant G266.2-1.2/Vela Jr.
AB - We present results of three wide-band directed searches for continuous gravitational waves from 15 young supernova remnants in the first half of the third Advanced LIGO and Virgo observing run. We use three search pipelines with distinct signal models and methods of identifying noise artifacts. Without ephemerides of these sources, the searches are conducted over a fRequency band spanning from 10 to 2 kHz. We find no evidence of continuous gravitational radiation from these sources. We set upper limits on the intrinsic signal strain at 95% confidence level in sample subbands, estimate the sensitivity in the full band, and derive the corresponding constraints on the fiducial neutron star ellipticity and r-mode amplitude. The best 95% confidence constraints placed on the signal strain are 7.7 × 10-26 and 7.8 × 10-26 near 200 Hz for the supernova remnants G39.2-0.3 and G65.7+1.2, respectively. The most stringent constraints on the ellipticity and r-mode amplitude reach ≲10-7 and ≲ 10-5, respectively, at frequencies above ∼400 Hz for the closest supernova remnant G266.2-1.2/Vela Jr.
KW - Gravitational wave astronomy (675)
KW - Gravitational waves (678)
KW - Neutron stars (1108)
KW - Supernova remnants (1667)
UR - http://www.scopus.com/inward/record.url?scp=85120464845&partnerID=8YFLogxK
U2 - 10.3847/1538-4357/ac17ea
DO - 10.3847/1538-4357/ac17ea
M3 - Article
AN - SCOPUS:85120464845
SN - 0004-637X
VL - 921
JO - Astrophysical Journal
JF - Astrophysical Journal
IS - 1
M1 - 80
ER -