Search for Multimessenger Sources of Gravitational Waves and High-energy Neutrinos with Advanced LIGO during Its First Observing Run, ANTARES, and IceCube

LIGO Scientific Collaboration and Virgo Collaboration

Research output: Contribution to journalArticle

3 Citations (Scopus)

Abstract

Astrophysical sources of gravitational waves, such as binary neutron star and black hole mergers or core-collapse supernovae, can drive relativistic outflows, giving rise to non-thermal high-energy emission. High-energy neutrinos are signatures of such outflows. The detection of gravitational waves and high-energy neutrinos from common sources could help establish the connection between the dynamics of the progenitor and the properties of the outflow. We searched for associated emission of gravitational waves and high-energy neutrinos from astrophysical transients with minimal assumptions using data from Advanced LIGO from its first observing run O1, and data from the Antares and IceCube neutrino observatories from the same time period. We focused on candidate events whose astrophysical origins could not be determined from a single messenger. We found no significant coincident candidate, which we used to constrain the rate density of astrophysical sources dependent on their gravitational-wave and neutrino emission processes.

Original languageEnglish
Article number134
JournalAstrophysical Journal
Volume870
Issue number2
DOIs
Publication statusPublished - 10 Jan 2019

Fingerprint

LIGO (observatory)
gravitational waves
neutrinos
astrophysics
outflow
energy
merger
binary stars
observatory
neutron stars
supernovae
observatories
signatures

Cite this

@article{e84bc9c7d77a45cea54481cfed043fba,
title = "Search for Multimessenger Sources of Gravitational Waves and High-energy Neutrinos with Advanced LIGO during Its First Observing Run, ANTARES, and IceCube",
abstract = "Astrophysical sources of gravitational waves, such as binary neutron star and black hole mergers or core-collapse supernovae, can drive relativistic outflows, giving rise to non-thermal high-energy emission. High-energy neutrinos are signatures of such outflows. The detection of gravitational waves and high-energy neutrinos from common sources could help establish the connection between the dynamics of the progenitor and the properties of the outflow. We searched for associated emission of gravitational waves and high-energy neutrinos from astrophysical transients with minimal assumptions using data from Advanced LIGO from its first observing run O1, and data from the Antares and IceCube neutrino observatories from the same time period. We focused on candidate events whose astrophysical origins could not be determined from a single messenger. We found no significant coincident candidate, which we used to constrain the rate density of astrophysical sources dependent on their gravitational-wave and neutrino emission processes.",
keywords = "gravitational waves, neutrinos",
author = "{LIGO Scientific Collaboration and Virgo Collaboration} and A. Albert and M. Andr{\'e} and M. Anghinolfi and M. Ardid and Aubert, {J. J.} and J. Aublin and T. Avgitas and B. Baret and J. Barrios-Mart{\'i} and S. Basa and B. Belhorma and V. Bertin and S. Biagi and R. Bormuth and J. Boumaaza and S. Bourret and Bouwhuis, {M. C.} and H. Br{\^a}nzaş and R. Bruijn and J. Brunner and J. Busto and A. Capone and L. Caramete and J. Carr and S. Celli and M. Chabab and {El Moursli}, {R. Cherkaoui} and T. Chiarusi and M. Circella and Coelho, {J. A.B.} and A. Coleiro and M. Colomer and R. Coniglione and H. Costantini and P. Coyle and A. Creusot and D{\'i}az, {A. F.} and A. Deschamps and C. Distefano and {Di Palma}, I. and A. Domi and R. Don{\`a} and C. Donzaud and D. Dornic and D. Drouhin and T. Eberl and {El Bojaddaini}, I. and {El Khayati}, N. and D. Els{\"a}sser and A. Enzenh{\"o}fer and A. Ettahiri and F. Fassi and I. Felis and P. Fermani and G. Ferrara and L. Fusco and P. Gay and H. Glotin and T. Gr{\'e}goire and Ruiz, {R. Gracia} and K. Graf and S. Hallmann and {Van Haren}, H. and Heijboer, {A. J.} and Y. Hello and Hern{\'a}ndez-Rey, {J. J.} and J. H{\"o}{\ss}l and J. Hofest{\"a}dt and G. Illuminati and {De Jong}, M. and M. Jongen and M. Kadler and O. Kalekin and U. Katz and Khan-Chowdhury, {N. R.} and A. Kouchner and M. Kreter and I. Kreykenbohm and V. Kulikovskiy and C. Lachaud and R. Lahmann and D. Lef{\`e}vre and E. Leonora and G. Levi and M. Lotze and S. Loucatos and G. Maggi and M. Marcelin and A. Margiotta and A. Marinelli and Mart{\'i}nez-Mora, {J. A.} and R. Mele and K. Melis and P. Migliozzi and A. Moussa and S. Navas and E. Nezri and A. Nu{\~n}ez and M. Organokov and Pǎvǎlaş, {G. E.} and C. Pellegrino and P. Piattelli and V. Popa and T. Pradier and L. Quinn and C. Racca and N. Randazzo and G. Riccobene and A. S{\'a}nchez-Losa and M. Salda{\~n}a and I. Salvadori and Samtleben, {D. F.E.} and M. Sanguineti and P. Sapienza and F. Sch{\"u}ssler and M. Spurio and Th Stolarczyk and M. Taiuti and Y. Tayalati and A. Trovato and B. Vallage and {Van Elewyck}, V. and F. Versari and D. Vivolo and J. Wilms and D. Zaborov and Zornoza, {J. D.} and J. Z{\~n}iga and Aartsen, {M. G.} and M. Ackermann and J. Adams and Aguilar, {J. A.} and M. Ahlers and M. Ahrens and D. Altmann and K. Andeen and T. Anderson and I. Ansseau and G. Anton and C. Arg{\"u}elles and J. Auffenberg and S. Axani and P. Backes and H. Bagherpour and X. Bai and A. Barbano and Barron, {J. P.} and Barwick, {S. W.} and V. Baum and R. Bay and Beatty, {J. J.} and Tjus, {J. Becker} and Becker, {K. H.} and S. Benzvi and D. Berley and E. Bernardini and Besson, {D. Z.} and G. Binder and D. Bindig and E. Blaufuss and S. Blot and C. Bohm and M. B{\"o}rner and F. Bos and S. B{\"o}ser and O. Botner and E. Bourbeau and J. Bourbeau and F. Bradascio and J. Braun and M. Brenzke and Bretz, {H. P.} and S. Bron and J. Brostean-Kaiser and A. Burgman and Busse, {R. S.} and T. Carver and E. Cheung and D. Chirkin and K. Clark and L. Classen and Collin, {G. H.} and Conrad, {J. M.} and P. Coppin and P. Correa and Cowen, {D. F.} and R. Cross and P. Dave and M. Day and {De Andr{\'e}}, {J. P.A.M.} and {De Clercq}, C. and Delaunay, {J. J.} and H. Dembinski and K. Deoskar and {De Ridder}, S. and P. Desiati and {De Vries}, {K. D.} and {De Wasseige}, G. and {De With}, M. and T. Deyoung and D{\'i}az-V{\'e}lez, {J. C.} and Lorenzo, {V. Di} and H. Dujmovic and Dumm, {J. P.} and M. Dunkman and E. Dvorak and B. Eberhardt and T. Ehrhardt and B. Eichmann and P. Eller and Evenson, {P. A.} and S. Fahey and Fazely, {A. R.} and J. Felde and K. Filimonov and C. Finley and A. Franckowiak and E. Friedman and A. Fritz and Gaisser, {T. K.} and J. Gallagher and E. Ganster and S. Garrappa and L. Gerhardt and K. Ghorbani and W. Giang and T. Glauch and T. Gl{\"u}senkamp and A. Goldschmidt and Gonzalez, {J. G.} and D. Grant and Z. Griffith and C. Haack and Blair, {C. D.} and Blair, {D. G.} and V. Bossilkov and J. Bosveld and X. Chen and Q. Chu and S. Chung and Coward, {D. M.} and Howell, {E. J.} and L. Ju and McCann, {J. J.} and Page, {M. A.} and Slaven-Blair, {T. J.} and {Van Heijningen}, {J. V.} and L. Wen and J. Zhang and C. Zhao",
year = "2019",
month = "1",
day = "10",
doi = "10.3847/1538-4357/aaf21d",
language = "English",
volume = "870",
journal = "The Astrophysical Journal",
issn = "0004-637X",
publisher = "IOP Publishing",
number = "2",

}

Search for Multimessenger Sources of Gravitational Waves and High-energy Neutrinos with Advanced LIGO during Its First Observing Run, ANTARES, and IceCube. / LIGO Scientific Collaboration and Virgo Collaboration.

In: Astrophysical Journal, Vol. 870, No. 2, 134, 10.01.2019.

Research output: Contribution to journalArticle

TY - JOUR

T1 - Search for Multimessenger Sources of Gravitational Waves and High-energy Neutrinos with Advanced LIGO during Its First Observing Run, ANTARES, and IceCube

AU - LIGO Scientific Collaboration and Virgo Collaboration

AU - Albert, A.

AU - André, M.

AU - Anghinolfi, M.

AU - Ardid, M.

AU - Aubert, J. J.

AU - Aublin, J.

AU - Avgitas, T.

AU - Baret, B.

AU - Barrios-Martí, J.

AU - Basa, S.

AU - Belhorma, B.

AU - Bertin, V.

AU - Biagi, S.

AU - Bormuth, R.

AU - Boumaaza, J.

AU - Bourret, S.

AU - Bouwhuis, M. C.

AU - Brânzaş, H.

AU - Bruijn, R.

AU - Brunner, J.

AU - Busto, J.

AU - Capone, A.

AU - Caramete, L.

AU - Carr, J.

AU - Celli, S.

AU - Chabab, M.

AU - El Moursli, R. Cherkaoui

AU - Chiarusi, T.

AU - Circella, M.

AU - Coelho, J. A.B.

AU - Coleiro, A.

AU - Colomer, M.

AU - Coniglione, R.

AU - Costantini, H.

AU - Coyle, P.

AU - Creusot, A.

AU - Díaz, A. F.

AU - Deschamps, A.

AU - Distefano, C.

AU - Di Palma, I.

AU - Domi, A.

AU - Donà, R.

AU - Donzaud, C.

AU - Dornic, D.

AU - Drouhin, D.

AU - Eberl, T.

AU - El Bojaddaini, I.

AU - El Khayati, N.

AU - Elsässer, D.

AU - Enzenhöfer, A.

AU - Ettahiri, A.

AU - Fassi, F.

AU - Felis, I.

AU - Fermani, P.

AU - Ferrara, G.

AU - Fusco, L.

AU - Gay, P.

AU - Glotin, H.

AU - Grégoire, T.

AU - Ruiz, R. Gracia

AU - Graf, K.

AU - Hallmann, S.

AU - Van Haren, H.

AU - Heijboer, A. J.

AU - Hello, Y.

AU - Hernández-Rey, J. J.

AU - Hößl, J.

AU - Hofestädt, J.

AU - Illuminati, G.

AU - De Jong, M.

AU - Jongen, M.

AU - Kadler, M.

AU - Kalekin, O.

AU - Katz, U.

AU - Khan-Chowdhury, N. R.

AU - Kouchner, A.

AU - Kreter, M.

AU - Kreykenbohm, I.

AU - Kulikovskiy, V.

AU - Lachaud, C.

AU - Lahmann, R.

AU - Lefèvre, D.

AU - Leonora, E.

AU - Levi, G.

AU - Lotze, M.

AU - Loucatos, S.

AU - Maggi, G.

AU - Marcelin, M.

AU - Margiotta, A.

AU - Marinelli, A.

AU - Martínez-Mora, J. A.

AU - Mele, R.

AU - Melis, K.

AU - Migliozzi, P.

AU - Moussa, A.

AU - Navas, S.

AU - Nezri, E.

AU - Nuñez, A.

AU - Organokov, M.

AU - Pǎvǎlaş, G. E.

AU - Pellegrino, C.

AU - Piattelli, P.

AU - Popa, V.

AU - Pradier, T.

AU - Quinn, L.

AU - Racca, C.

AU - Randazzo, N.

AU - Riccobene, G.

AU - Sánchez-Losa, A.

AU - Saldaña, M.

AU - Salvadori, I.

AU - Samtleben, D. F.E.

AU - Sanguineti, M.

AU - Sapienza, P.

AU - Schüssler, F.

AU - Spurio, M.

AU - Stolarczyk, Th

AU - Taiuti, M.

AU - Tayalati, Y.

AU - Trovato, A.

AU - Vallage, B.

AU - Van Elewyck, V.

AU - Versari, F.

AU - Vivolo, D.

AU - Wilms, J.

AU - Zaborov, D.

AU - Zornoza, J. D.

AU - Zñiga, J.

AU - Aartsen, M. G.

AU - Ackermann, M.

AU - Adams, J.

AU - Aguilar, J. A.

AU - Ahlers, M.

AU - Ahrens, M.

AU - Altmann, D.

AU - Andeen, K.

AU - Anderson, T.

AU - Ansseau, I.

AU - Anton, G.

AU - Argüelles, C.

AU - Auffenberg, J.

AU - Axani, S.

AU - Backes, P.

AU - Bagherpour, H.

AU - Bai, X.

AU - Barbano, A.

AU - Barron, J. P.

AU - Barwick, S. W.

AU - Baum, V.

AU - Bay, R.

AU - Beatty, J. J.

AU - Tjus, J. Becker

AU - Becker, K. H.

AU - Benzvi, S.

AU - Berley, D.

AU - Bernardini, E.

AU - Besson, D. Z.

AU - Binder, G.

AU - Bindig, D.

AU - Blaufuss, E.

AU - Blot, S.

AU - Bohm, C.

AU - Börner, M.

AU - Bos, F.

AU - Böser, S.

AU - Botner, O.

AU - Bourbeau, E.

AU - Bourbeau, J.

AU - Bradascio, F.

AU - Braun, J.

AU - Brenzke, M.

AU - Bretz, H. P.

AU - Bron, S.

AU - Brostean-Kaiser, J.

AU - Burgman, A.

AU - Busse, R. S.

AU - Carver, T.

AU - Cheung, E.

AU - Chirkin, D.

AU - Clark, K.

AU - Classen, L.

AU - Collin, G. H.

AU - Conrad, J. M.

AU - Coppin, P.

AU - Correa, P.

AU - Cowen, D. F.

AU - Cross, R.

AU - Dave, P.

AU - Day, M.

AU - De André, J. P.A.M.

AU - De Clercq, C.

AU - Delaunay, J. J.

AU - Dembinski, H.

AU - Deoskar, K.

AU - De Ridder, S.

AU - Desiati, P.

AU - De Vries, K. D.

AU - De Wasseige, G.

AU - De With, M.

AU - Deyoung, T.

AU - Díaz-Vélez, J. C.

AU - Lorenzo, V. Di

AU - Dujmovic, H.

AU - Dumm, J. P.

AU - Dunkman, M.

AU - Dvorak, E.

AU - Eberhardt, B.

AU - Ehrhardt, T.

AU - Eichmann, B.

AU - Eller, P.

AU - Evenson, P. A.

AU - Fahey, S.

AU - Fazely, A. R.

AU - Felde, J.

AU - Filimonov, K.

AU - Finley, C.

AU - Franckowiak, A.

AU - Friedman, E.

AU - Fritz, A.

AU - Gaisser, T. K.

AU - Gallagher, J.

AU - Ganster, E.

AU - Garrappa, S.

AU - Gerhardt, L.

AU - Ghorbani, K.

AU - Giang, W.

AU - Glauch, T.

AU - Glüsenkamp, T.

AU - Goldschmidt, A.

AU - Gonzalez, J. G.

AU - Grant, D.

AU - Griffith, Z.

AU - Haack, C.

AU - Blair, C. D.

AU - Blair, D. G.

AU - Bossilkov, V.

AU - Bosveld, J.

AU - Chen, X.

AU - Chu, Q.

AU - Chung, S.

AU - Coward, D. M.

AU - Howell, E. J.

AU - Ju, L.

AU - McCann, J. J.

AU - Page, M. A.

AU - Slaven-Blair, T. J.

AU - Van Heijningen, J. V.

AU - Wen, L.

AU - Zhang, J.

AU - Zhao, C.

PY - 2019/1/10

Y1 - 2019/1/10

N2 - Astrophysical sources of gravitational waves, such as binary neutron star and black hole mergers or core-collapse supernovae, can drive relativistic outflows, giving rise to non-thermal high-energy emission. High-energy neutrinos are signatures of such outflows. The detection of gravitational waves and high-energy neutrinos from common sources could help establish the connection between the dynamics of the progenitor and the properties of the outflow. We searched for associated emission of gravitational waves and high-energy neutrinos from astrophysical transients with minimal assumptions using data from Advanced LIGO from its first observing run O1, and data from the Antares and IceCube neutrino observatories from the same time period. We focused on candidate events whose astrophysical origins could not be determined from a single messenger. We found no significant coincident candidate, which we used to constrain the rate density of astrophysical sources dependent on their gravitational-wave and neutrino emission processes.

AB - Astrophysical sources of gravitational waves, such as binary neutron star and black hole mergers or core-collapse supernovae, can drive relativistic outflows, giving rise to non-thermal high-energy emission. High-energy neutrinos are signatures of such outflows. The detection of gravitational waves and high-energy neutrinos from common sources could help establish the connection between the dynamics of the progenitor and the properties of the outflow. We searched for associated emission of gravitational waves and high-energy neutrinos from astrophysical transients with minimal assumptions using data from Advanced LIGO from its first observing run O1, and data from the Antares and IceCube neutrino observatories from the same time period. We focused on candidate events whose astrophysical origins could not be determined from a single messenger. We found no significant coincident candidate, which we used to constrain the rate density of astrophysical sources dependent on their gravitational-wave and neutrino emission processes.

KW - gravitational waves

KW - neutrinos

UR - http://www.scopus.com/inward/record.url?scp=85060246308&partnerID=8YFLogxK

U2 - 10.3847/1538-4357/aaf21d

DO - 10.3847/1538-4357/aaf21d

M3 - Article

VL - 870

JO - The Astrophysical Journal

JF - The Astrophysical Journal

SN - 0004-637X

IS - 2

M1 - 134

ER -