Seagrass metabolism across a productivity gradient using the eddy covariance, Eulerian control volume, and biomass addition techniques

M.H. Long, P. Berg, James Falter

    Research output: Contribution to journalArticle

    8 Citations (Scopus)

    Abstract

    © 2015. American Geophysical Union. All Rights Reserved. The net ecosystem metabolism of the seagrass Thalassia testudinum was studied across a nutrient and productivity gradient in Florida Bay, Florida, using the Eulerian control volume, eddy covariance, and biomass addition techniques. In situ oxygen fluxes were determined by a triangular Eulerian control volume with sides 250 m long and by eddy covariance instrumentation at its center. The biomass addition technique evaluated the aboveground seagrass productivity through the net biomass added. The spatial and temporal resolutions, accuracies, and applicability of each method were compared. The eddy covariance technique better resolved the short-term flux rates and the productivity gradient across the bay, which was consistent with the long-term measurements from the biomass addition technique. The net primary production rates from the biomass addition technique, which were expected to show greater autotrophy due to the exclusion of sediment metabolism and belowground production, were 71, 53, and 30 mmol carbon m-2 d-1 at 3 sites across the bay. The net ecosystem metabolism was 35, 25, and 11 mmol oxygen m-2 d-1 from the eddy covariance technique and 10, -103, and 14 mmol oxygen m-2 d-1 from the Eulerian control volume across the same sites, respectively. The low-flow conditions in the shallow bays allowed for periodic stratification and long residence times within the Eulerian control volume that likely reduced its precision. Overall, the eddy covariance technique had the highest temporal resolution while producing accurate long-term flux rates that surpassed the capabilities of the biomass addition and Eulerian control volume techniques in these shallow coastal bays. Key Points: Florida Bay seagrass meadows were net autotrophic across a productivity gradient Eddy covariance measured the most accurate and high-resolution flux rates Stratification and sensor precision limited the Eulerian control volume accuracy
    Original languageEnglish
    Pages (from-to)3624-3639
    JournalJournal of Geophysical Research: Oceans
    Volume120
    Issue number5
    DOIs
    Publication statusPublished - 2015

      Fingerprint

    Cite this