TY - JOUR
T1 - Salinipeptins
T2 - Integrated Genomic and Chemical Approaches Reveal Unusual d -Amino Acid-Containing Ribosomally Synthesized and Post-Translationally Modified Peptides (RiPPs) from a Great Salt Lake Streptomyces sp.
AU - Shang, Zhuo
AU - Winter, Jaclyn M.
AU - Kauffman, Christopher A.
AU - Yang, Inho
AU - Fenical, William
PY - 2019/3/15
Y1 - 2019/3/15
N2 - Analysis of the full genome of an environmentally unique, halotolerant Streptomyces sp. strain GSL-6C, isolated from the Great Salt Lake, revealed a gene cluster encoding the biosynthesis of the salinipeptins, d-amino-acid-containing members of the rare linaridin subfamily of ribosomally synthesized and post-translationally modified peptides (RiPPs). The sequence organization of the unmodified amino acid residues in salinipeptins A-D (1-4) were suggested by genome annotation, and subsequently, their sequence and post-translational modifications were defined using a range of spectroscopic techniques and chemical derivatization approaches. The salinipeptins are unprecedented linaridins bearing nine d-amino acids, which are uncommon in RiPP natural products and are the first reported in the linaridin subfamily. Whole genome mining of GSL-6C did not reveal any homologues of the reported genes responsible for amino acid epimerization in RiPPs, inferring new epimerases may be involved in the conversion of l- to d-amino acids. In addition, the N-oxide and dimethylimidazolidin-4-one moieties in salinipeptins B and C, which are modified from N,N-dimethylalanine, are unknown in bacterial peptides. The three-dimensional structure of salinipeptin A, possessing four loops generated by significant hydrogen bonding, was established on the basis of observed nuclear Overhauser effect (NOE) correlations. This study demonstrates that integration of genomic information early in chemical analysis significantly facilitates the discovery and structure characterization of novel microbial secondary metabolites.
AB - Analysis of the full genome of an environmentally unique, halotolerant Streptomyces sp. strain GSL-6C, isolated from the Great Salt Lake, revealed a gene cluster encoding the biosynthesis of the salinipeptins, d-amino-acid-containing members of the rare linaridin subfamily of ribosomally synthesized and post-translationally modified peptides (RiPPs). The sequence organization of the unmodified amino acid residues in salinipeptins A-D (1-4) were suggested by genome annotation, and subsequently, their sequence and post-translational modifications were defined using a range of spectroscopic techniques and chemical derivatization approaches. The salinipeptins are unprecedented linaridins bearing nine d-amino acids, which are uncommon in RiPP natural products and are the first reported in the linaridin subfamily. Whole genome mining of GSL-6C did not reveal any homologues of the reported genes responsible for amino acid epimerization in RiPPs, inferring new epimerases may be involved in the conversion of l- to d-amino acids. In addition, the N-oxide and dimethylimidazolidin-4-one moieties in salinipeptins B and C, which are modified from N,N-dimethylalanine, are unknown in bacterial peptides. The three-dimensional structure of salinipeptin A, possessing four loops generated by significant hydrogen bonding, was established on the basis of observed nuclear Overhauser effect (NOE) correlations. This study demonstrates that integration of genomic information early in chemical analysis significantly facilitates the discovery and structure characterization of novel microbial secondary metabolites.
UR - http://www.scopus.com/inward/record.url?scp=85062542894&partnerID=8YFLogxK
U2 - 10.1021/acschembio.8b01058
DO - 10.1021/acschembio.8b01058
M3 - Article
C2 - 30753052
AN - SCOPUS:85062542894
SN - 1554-8929
VL - 14
SP - 415
EP - 425
JO - ACS Chemical Biology
JF - ACS Chemical Biology
IS - 3
ER -