TY - JOUR
T1 - Running mechanics and leg muscle activity patterns during early and late acceleration phases of repeated treadmill sprints in male recreational athletes
AU - Girard, Olivier
AU - Brocherie, Franck
AU - Morin, Jean Benoit
AU - Millet, Grégoire P.
AU - Hansen, Clint
PY - 2020/12
Y1 - 2020/12
N2 - Purpose: We determined whether running mechanics and leg muscle activity patterns for pre-activation (50 ms prior to foot contact) and loading (first half, second half and entire stance) phases vary between early, late and entire acceleration phases during repeated treadmill sprints. Methods: Ten male athletes performed three sets of five 5-s sprint accelerations (25-s and 3-min recovery between sprints and sets, respectively) on an instrumented treadmill. Ground reaction forces and surface EMG data (root mean square values of vastus lateralis, rectus femoris, biceps femoris, gastrocnemius medialis, gastrocnemius lateralis and tibialis anterior muscles of the right leg) corresponding to early, late and entire acceleration (steps 2, 4 and 6; steps 8, 10 and 12; and all steps, respectively) have been compared. Results: Independently of fatigue, vertical and horizontal forces, contact time, step length, and step frequency differed as running velocity increased over different sprint acceleration sections (all P < 0.05). For pre-activation, first half, second half and entire stance phases taken separately, each of the six studied muscles displayed specific main sprint number and analysis section effects (all P < 0.05). However, there was in general no significant interaction between sprint number and analysis section (all P > 0.27). Conclusion: During repeated treadmill sprints, ground reaction force variables and leg muscle activity patterns can vary between early, late and entire acceleration phases. Identification of neuro-mechanical adjustments across the gait cycle with fatigue, however, did not differ when considering all steps or only a few steps during the early or late acceleration phases.
AB - Purpose: We determined whether running mechanics and leg muscle activity patterns for pre-activation (50 ms prior to foot contact) and loading (first half, second half and entire stance) phases vary between early, late and entire acceleration phases during repeated treadmill sprints. Methods: Ten male athletes performed three sets of five 5-s sprint accelerations (25-s and 3-min recovery between sprints and sets, respectively) on an instrumented treadmill. Ground reaction forces and surface EMG data (root mean square values of vastus lateralis, rectus femoris, biceps femoris, gastrocnemius medialis, gastrocnemius lateralis and tibialis anterior muscles of the right leg) corresponding to early, late and entire acceleration (steps 2, 4 and 6; steps 8, 10 and 12; and all steps, respectively) have been compared. Results: Independently of fatigue, vertical and horizontal forces, contact time, step length, and step frequency differed as running velocity increased over different sprint acceleration sections (all P < 0.05). For pre-activation, first half, second half and entire stance phases taken separately, each of the six studied muscles displayed specific main sprint number and analysis section effects (all P < 0.05). However, there was in general no significant interaction between sprint number and analysis section (all P > 0.27). Conclusion: During repeated treadmill sprints, ground reaction force variables and leg muscle activity patterns can vary between early, late and entire acceleration phases. Identification of neuro-mechanical adjustments across the gait cycle with fatigue, however, did not differ when considering all steps or only a few steps during the early or late acceleration phases.
KW - Acceleration performance
KW - Repeated sprint ability
KW - Running mechanics
KW - Sprint phase
KW - Surface electromyography
UR - http://www.scopus.com/inward/record.url?scp=85091442169&partnerID=8YFLogxK
U2 - 10.1007/s00421-020-04500-8
DO - 10.1007/s00421-020-04500-8
M3 - Article
C2 - 32980967
AN - SCOPUS:85091442169
SN - 1439-6319
VL - 120
SP - 2785
EP - 2796
JO - European Journal of Applied Physiology
JF - European Journal of Applied Physiology
IS - 12
ER -