Root distributions of Australian herbaceous perennial legumes in response to phosphorus placement

Matthew Denton, C. Sasse, Mark Tibbett, Megan Ryan

    Research output: Contribution to journalArticlepeer-review

    41 Citations (Scopus)


    Many Australian plant species have specific root adaptations for growth in phosphorus-impoverished soils, and are often sensitive to high external P concentrations. The growth responses of native Australian legumes in agricultural soils with elevated P availability in the surface horizons are unknown. The aim of these experiments was to test the hypothesis that increased P concentration in surface soil would reduce root proliferation at depth in native legumes. The effect of P placement on root distribution was assessed for two Australian legumes, Kennedia prorepens F. Muell. and Lotus australis Andrews, and the exotic Medicago sativa L. Three treatments were established in a low-P loam soil: amendment of 0.15 g mono-calcium phosphate in either ( i) the top 50mm ( 120 mu g P g(-1)) or ( ii) the top 500mm ( 12 mu g P g(-1)) of soil, and an unamended control. In the unamended soil M. sativa was shallow rooted, with 58% of the root length of in the top 50 mm. K. prorepens and L. australis had a more even distribution down the pot length, with only 4 and 22% of their roots in the 0 - 50mm pot section, respectively. When exposed to amendment of P in the top 50 mm, root length in the top 50mm increased 4-fold for K. prorepens and 10-fold for M. sativa, although the pattern of root distribution did not change for M. sativa. L. australis was relatively unresponsive to P additions and had an even distribution of roots down the pot. Shoot P concentrations differed according to species but not treatment ( K. prorepens 2.1 mg g(-1), L. australis 2.4 mg g(-1), M. sativa 3.2 mg g(-1)). Total shoot P content was higher for K. prorepens than for the other species in all treatments. In a second experiment, monoester phosphatases were analysed from 1-mm slices of soil collected directly adjacent to the rhizosphere. All species exuded phosphatases into the rhizosphere, but addition of P to soil reduced phosphatase activity only for K. prorepens. Overall, high P concentration in the surface soil altered root distribution, but did not reduce root proliferation at depth. Furthermore, the Australian herbaceous perennial legumes had root distributions that enhanced P acquisition from low-P soils.
    Original languageEnglish
    Pages (from-to)1091-1102
    JournalFunctional Plant Biology
    Issue number12
    Publication statusPublished - 2006


    Dive into the research topics of 'Root distributions of Australian herbaceous perennial legumes in response to phosphorus placement'. Together they form a unique fingerprint.

    Cite this