TY - JOUR
T1 - Roles of cell-wall invertases and monosaccharide transporters in the growth and development of Arabidopsis
AU - Sherson, S.M.
AU - Alford, H.L.
AU - Forbes, S.M.
AU - Wallace, G.
AU - Smith, Steven
PY - 2003
Y1 - 2003
N2 - The hydrolysis of sucrose by cell-wall invertases (cwINV) and the subsequent import of hexoses into target cells appears to be crucial for appropriate metabolism, growth and differentiation in plants. Hexose uptake from the apoplast is catalysed by monosaccharide/H+ symporters (Sugar Transport Proteins or STPs), which have the potential to sense sugars. Import of extracellular hexoses may generate signals to orchestrate cellular activities, or simply feed metabolic pathways distinct from those fed by sucrose. It is predicted that Arabidopsis has six cwINV genes and at least 14 STP genes. These genes show different spatial and temporal patterns of expression, and several knock-out mutants have been isolated for analysis. AtSTP1 transports glucose, galactose, xylose, and mannose, but not fructose. It accounts for the majority of the AtSTP activity in vegetative tissues and its activity is markedly repressed by treatment with exogenous sugars. These observations are consistent with a role in the retrieval of cell-wall.-derived sugars, for example, during carbohydrate limitation or cell expansion. The AtSTP1 gene is also expressed in developing seeds, where it might be responsible for the uptake of glucose derived from imported sucrose. The large number of AtcwINV and AtSTP genes, together with complex patterns of expression for each, and the possibility that each protein may have more than one physiological function, provides the plant with the potential for a multiplicity of patterns of monosaccharide utilization to direct growth and differentiation or to respond flexibly to changing environmental conditions.
AB - The hydrolysis of sucrose by cell-wall invertases (cwINV) and the subsequent import of hexoses into target cells appears to be crucial for appropriate metabolism, growth and differentiation in plants. Hexose uptake from the apoplast is catalysed by monosaccharide/H+ symporters (Sugar Transport Proteins or STPs), which have the potential to sense sugars. Import of extracellular hexoses may generate signals to orchestrate cellular activities, or simply feed metabolic pathways distinct from those fed by sucrose. It is predicted that Arabidopsis has six cwINV genes and at least 14 STP genes. These genes show different spatial and temporal patterns of expression, and several knock-out mutants have been isolated for analysis. AtSTP1 transports glucose, galactose, xylose, and mannose, but not fructose. It accounts for the majority of the AtSTP activity in vegetative tissues and its activity is markedly repressed by treatment with exogenous sugars. These observations are consistent with a role in the retrieval of cell-wall.-derived sugars, for example, during carbohydrate limitation or cell expansion. The AtSTP1 gene is also expressed in developing seeds, where it might be responsible for the uptake of glucose derived from imported sucrose. The large number of AtcwINV and AtSTP genes, together with complex patterns of expression for each, and the possibility that each protein may have more than one physiological function, provides the plant with the potential for a multiplicity of patterns of monosaccharide utilization to direct growth and differentiation or to respond flexibly to changing environmental conditions.
U2 - 10.1093/jxb/erg055
DO - 10.1093/jxb/erg055
M3 - Article
SN - 0022-0957
VL - 54
SP - 525
EP - 531
JO - Journal of Experimental Botany
JF - Journal of Experimental Botany
IS - 382
ER -