Role of membrane surface potential and other factors in the uptake of non-transferrin-bound iron by reticulocytes

Elizabeth Quail, Evan Morgan

Research output: Contribution to journalArticlepeer-review

30 Citations (Web of Science)


Reticulocytes suspended in low ionic strength media such as isotonic sucrose solution efficiently take up non-transferrin-bound iron and utilize it for heme synthesis. The present study was undertaken to determine how such media facilitate iron utilization by the cells. The effects of changes in membrane surface potential, membrane permeability, cell size, transmembrane potential difference, oxidation state of the iron, and lipid peroxidation were investigated. Iron uptake to heme, cytosol, and stromal fractions of cells was measured using rabbit reticulocytes incubated with Fe-59-labelled Fe(II)in 0.27 M sucrose, pH 6.5. Suspension of the cells in sucrose led to increased membrane permeability, loss of intracellular K+, decreased cell size, and increased transmembrane potential difference. However, none of these changes could account for the high efficiency of iron uptake which was observed. The large negative membrane surface potential which occurs in sucrose was modified by the addition of mono-, di-, tri-, and polyvalent cations to the solution. This inhibited iron uptake to a degree which for many cations varied with their valency. Other cations (Mn2+, Co2+, Ni2+, Zn2+) were also very potent inhibitors, probably due to direct action on the transport process. Ferricyanide inhibited iron uptake, while ferrocyanide and ascorbate increased the uptake of Fe(III) but not Fe(II). It is concluded that the high negative surface potential of reticulocytes suspended in sucrose solution facilitates iron uptake by aiding the approach of iron to the transport site on the cell membrane. The iron is probably transported into the cell in the ferrous form. (C) 1994 Wiley-Liss, Inc.
Original languageEnglish
Pages (from-to)238-244
JournalJournal of Cellular Physiology
Issue number2
Publication statusPublished - 1994


Dive into the research topics of 'Role of membrane surface potential and other factors in the uptake of non-transferrin-bound iron by reticulocytes'. Together they form a unique fingerprint.

Cite this