Abstract
We investigate the shape of critical points for a free energy consisting of a nonlocal perimeter plus a nonlocal repulsive term. In particular, we prove that a volume-constrained critical point is necessarily a ball if its volume is sufficiently small with respect to its isodiametric ratio, thus extending a result previously known only for global minimizers.
We also show that, at least in one-dimension, there exist critical points with arbitrarily small volume and large isodiametric ratio. This example shows that a constraint on the diameter is, in general, necessary to establish the radial symmetry of the critical points.
We also show that, at least in one-dimension, there exist critical points with arbitrarily small volume and large isodiametric ratio. This example shows that a constraint on the diameter is, in general, necessary to establish the radial symmetry of the critical points.
Original language | English |
---|---|
Pages (from-to) | 1523-1535 |
Number of pages | 13 |
Journal | Nonlinearity |
Volume | 30 |
Issue number | 4 |
DOIs | |
Publication status | Published - 2017 |
Externally published | Yes |