Revisiting concepts of thermal physiology: understanding negative feedback and set-point in mammals, birds, and lizards

Duncan Mitchell, Andrea Fuller, Edward P. Snelling, Glenn J. Tattersall, Robyn S. Hetem, Shane K. Maloney

Research output: Contribution to journalArticlepeer-review

Abstract

The thermoregulatory system of homeothermic endotherms operates to attain thermal equilibrium, that is no net loss or gain of heat, where possible, under a thermal challenge, and not to attain a set-point or any other target body temperature. The concept of a set-point in homeothermic temperature regulation has been widely misinterpreted, resulting in such confusion that some thermoregulation specialists have recommended that it be abandoned. But the set-point concept has enjoyed a resurgence in a different domain, lizard microclimate selection. We review the principles of thermoregulation in homeotherms, endorse a negative feedback system with independent set-points for individual thermo-effectors as its core mechanism, and address the misconceptions about homeothermic set-point. We also explore the concept of set-point range in lizard microclimate selection and conclude that there is substantial convergence between that concept and the set-points of homeothermic thermo-effectors, as thresholds. In neither homeothermic nor lizard thermoregulation is the concept of a unitary set-point appropriate. We review the problems of measuring the set-points for lizard microclimate selection. We do not believe that the set-point concept in thermoregulation should be abandoned just because it has been misinterpreted by some users. It is a valid concept, identifying the threshold body temperatures at which regulatory thermo-effectors will be activated, to aid in attaining thermal equilibrium.

Original languageEnglish
Number of pages30
JournalBiological Reviews
DOIs
Publication statusE-pub ahead of print - 6 Feb 2025

Cite this