Abstract
Background
Hypertension is the most common modifiable risk factor associated with atrial fibrillation.
Objective
The purpose of this study was to determine the effects of blood pressure (BP) lowering after renal denervation on atrial electrophysiologic and structural remodeling in humans.
Methods
Fourteen patients (mean age 64 ± 9 years, duration of hypertension 16 ± 11 years, on 5 ± 2 antihypertensive medications) with treatment-resistant hypertension underwent baseline 24-hour ambulatory BP monitoring, echocardiography, cardiac magnetic resonance imaging, and electrophysiologic study. Electrophysiologic study included measurements of P-wave duration, effective refractory periods, and conduction times. Electroanatomic mapping of the right atrium was completed using CARTO3 to determine local and regional conduction velocity and tissue voltage. Bilateral renal denervation was performed, and all measurements repeated after 6 months.
Results
After renal denervation, mean 24-hour BP reduced from 152/84 mm Hg to 141/80 mm Hg at 6-month follow-up (P 2 = 0.55, P =.01). There was a significant reduction in left ventricular mass (139 ± 37 g to 120 ± 29 g, P 1 partition coefficient 0.39 ± 0.07 to 0.31 ± 0.09, P =.01) on cardiac magnetic resonance imaging.
Conclusion
BP reduction after renal denervation is associated with improvements in regional and global atrial conduction and reductions in ventricular mass and fibrosis. Whether changes in electrical and structural remodeling are solely due to BP lowering or are due in part to intrinsic effects of renal denervation remains to be determined.
© 2015 Heart Rhythm Society. All rights reserved.
Hypertension is the most common modifiable risk factor associated with atrial fibrillation.
Objective
The purpose of this study was to determine the effects of blood pressure (BP) lowering after renal denervation on atrial electrophysiologic and structural remodeling in humans.
Methods
Fourteen patients (mean age 64 ± 9 years, duration of hypertension 16 ± 11 years, on 5 ± 2 antihypertensive medications) with treatment-resistant hypertension underwent baseline 24-hour ambulatory BP monitoring, echocardiography, cardiac magnetic resonance imaging, and electrophysiologic study. Electrophysiologic study included measurements of P-wave duration, effective refractory periods, and conduction times. Electroanatomic mapping of the right atrium was completed using CARTO3 to determine local and regional conduction velocity and tissue voltage. Bilateral renal denervation was performed, and all measurements repeated after 6 months.
Results
After renal denervation, mean 24-hour BP reduced from 152/84 mm Hg to 141/80 mm Hg at 6-month follow-up (P 2 = 0.55, P =.01). There was a significant reduction in left ventricular mass (139 ± 37 g to 120 ± 29 g, P 1 partition coefficient 0.39 ± 0.07 to 0.31 ± 0.09, P =.01) on cardiac magnetic resonance imaging.
Conclusion
BP reduction after renal denervation is associated with improvements in regional and global atrial conduction and reductions in ventricular mass and fibrosis. Whether changes in electrical and structural remodeling are solely due to BP lowering or are due in part to intrinsic effects of renal denervation remains to be determined.
© 2015 Heart Rhythm Society. All rights reserved.
Original language | English |
---|---|
Pages (from-to) | 982-990 |
Journal | Heart Rhythm |
Volume | 12 |
Issue number | 5 |
Early online date | 28 Jan 2015 |
DOIs | |
Publication status | Published - 1 May 2015 |