TY - JOUR
T1 - Return of Salmon-Derived Nutrients from the Riparian Zone to the Stream during a Storm in Southeastern Alaska
AU - Fellman, Jason
AU - Hood, E.
AU - Edwards, R.T.
AU - D'Amore, D.V.
PY - 2008
Y1 - 2008
N2 - Spawning salmon deliver nutrients (salmon-derived nutrients, SDN) to natal watersheds that can be incorporated into terrestrial and aquatic food webs, potentially increasing ecosystem productivity. Peterson Creek, a coastal watershed in southeast Alaska that supports several species of anadromous fish, was sampled over the course of a storm during September 2006 to test the hypothesis that stormflows re-introduce stored SDN into the stream. We used stable isotopes and PARAFAC modeling of fluorescence excitation–emission spectroscopy to detect flushing of DOM from salmon carcasses in the riparian zone back into a spawning stream. During the early storm hydrograph, streamwater concentrations of NH4–N and total dissolved phosphorus (TDP), the fluorescent protein tyrosine and the δ15N content of DOM peaked, followed by a rapid decrease during maximum stormflow. Although δ15N has previously been used to track SDN in riparian zones, the use of fluorescence spectroscopy provides an independent indicator that SDN are being returned from the riparian zone to the stream after a period of intermediate storage outside the stream channel. Our findings further demonstrate the utility of using both δ15N of streamwater DOM and fluorescence spectroscopy with PARAFAC modeling to monitor how the pool of streamwater DOM changes in spawning salmon streams.
AB - Spawning salmon deliver nutrients (salmon-derived nutrients, SDN) to natal watersheds that can be incorporated into terrestrial and aquatic food webs, potentially increasing ecosystem productivity. Peterson Creek, a coastal watershed in southeast Alaska that supports several species of anadromous fish, was sampled over the course of a storm during September 2006 to test the hypothesis that stormflows re-introduce stored SDN into the stream. We used stable isotopes and PARAFAC modeling of fluorescence excitation–emission spectroscopy to detect flushing of DOM from salmon carcasses in the riparian zone back into a spawning stream. During the early storm hydrograph, streamwater concentrations of NH4–N and total dissolved phosphorus (TDP), the fluorescent protein tyrosine and the δ15N content of DOM peaked, followed by a rapid decrease during maximum stormflow. Although δ15N has previously been used to track SDN in riparian zones, the use of fluorescence spectroscopy provides an independent indicator that SDN are being returned from the riparian zone to the stream after a period of intermediate storage outside the stream channel. Our findings further demonstrate the utility of using both δ15N of streamwater DOM and fluorescence spectroscopy with PARAFAC modeling to monitor how the pool of streamwater DOM changes in spawning salmon streams.
UR - https://www.scopus.com/pages/publications/45049085103
U2 - 10.1007/s10021-008-9139-y
DO - 10.1007/s10021-008-9139-y
M3 - Article
SN - 1432-9840
VL - 11
SP - 537
EP - 544
JO - Ecosystems
JF - Ecosystems
IS - 4
ER -