Retinal ganglion cell topography in elasmobranchs

Shaun Patrick Collin, Anna Bozzano

    Research output: Contribution to journalArticle

    55 Citations (Scopus)

    Abstract

    Retinal wholemounts are used to examine the topographic distribution of retinal cells within the ganglion cell layer in a range of elasmobranchs from different depths. The retina is examined for regional specializations for acute vision in six species of selachians, Galeocerdo cuvieri, Hemiscyllium ocellatum, Scyliorhinus canicula, Galeus melastomus, Etmopterus spinax, Isistius brasiliensis, one species of batoid, Raja bigelowi and one species of chimaera, Hydrolagus mirabilis. These species represent a range of lifestyles including pelagic, mesopelagic and benthic habitats, living from shallow water to the sea bottom at a depth of more than 3000 m. The topography of cells within the ganglion cell layer is non-uniform and changes markedly across the retina. Most species possess an increased density of cells across the horizontal (dorsal) meridian or visual streak, with a density range of 500 to 2,500 cells per mm2 with one or more regional increases in density lying within this specialized horizontal area. It is proposed that the higher spatial resolving power provided by the horizontal streak in these species mediates panoramic vision in the lower frontal visual field. Only I. brasiliensis possesses a concentric arrangement of retinal iso-density contours in temporal retina or an area centralis, thereby increasing spatial resolving power in a more specialized part of the visual field, an adaptation for its unusual feeding behavior. In Nissl-stained material, amacrine and ganglion cell populations could be distinguished on the criteria of soma size, soma shape and nuclear staining. Quantitative analyses show that the proportion of amacrine cells lying within the ganglion cell layer is non-uniform and ranges between 0.4 and 12.3% in specialized retinal areas and between 8.2 and 48.1% in the peripheral non-specialized regions. Analyses of soma area of the total population of cells in the ganglion cell layer also show that the pelagic species possess significantly smaller soma (9–186 μm2) than benthic and/or deep-sea species (16–338 μm2), and that a number of different morphological classes of cells are present including a small population of giant ganglion cells.
    Original languageEnglish
    Pages (from-to)191-208
    Number of pages17
    JournalBrain Behavior and Evolution
    Volume55
    Issue number4
    DOIs
    Publication statusPublished - Apr 2000

    Fingerprint Dive into the research topics of 'Retinal ganglion cell topography in elasmobranchs'. Together they form a unique fingerprint.

  • Cite this