Restricted transport of anti-transferrin receptor antibody (OX26) through the blood-brain barrier in the rat

T. Moos, Evan Morgan

Research output: Contribution to journalArticlepeer-review

137 Citations (Scopus)

Abstract

Anti-transferrin receptor IgG2a (OX26) transport into the brain was studied in rats. Uptake of. OX26 in brain capillary endothelial cells (BCECs) was > 10-fold higher than isotypic, non-immune IgG2a (Ni-IgG2a) when expressed as % ID/g. Accumulation of OX26 in the brain was higher in 15 postnatal (P)-day-old rats than in PO and adult (P70) rats. Iron-deficiency did not increase OX26 uptake in P15 rats. Three attempts were made to investigate transport from BCECs further into the brain. (i) Using a brain capillary depletion technique, 6-9% of OX26 was identified in the post-capillary compartment consisting of brain parenchyma minus BCECs. (ii) In cisternal CSF, the volume of distribution of OX26 was higher than for Ni-IgG2a when corrected for plasma concentration. (iii) Immunohistochemical mapping revealed the presence of OX26 almost exclusively in BCECs; extravascular staining was observed only in neurons situated periventricularly. The data support the hypothesis of facilitated uptake of OX26 due to the presence of transferrin receptors at the blood-brain barrier (BBB). However, OX26 accumulation in the postcapillary compartment was too small to justify a conclusion of receptor-mediated transcytosis of OX26 occurring in BCECs. Accumulation of OX26 in the post-capillary component may result from a diphasic transport that involves high-affinity accumulation of OX26 by the BCECs, clearly exceeding that of Ni-IgG2a, followed by a second transport mechanism that releases OX26 non-specifically further into the brain. The periventricular localization suggests that OX26 probably also derives from transport across the blood-CSF barrier.
Original languageEnglish
Pages (from-to)119-129
JournalJournal of Neurochemistry
Volume79
DOIs
Publication statusPublished - 2001

Fingerprint

Dive into the research topics of 'Restricted transport of anti-transferrin receptor antibody (OX26) through the blood-brain barrier in the rat'. Together they form a unique fingerprint.

Cite this