Response of Acropora digitifera to ocean acidification: constraints from δ11B, Sr, Mg, and Ba compositions of aragonitic skeletons cultured under variable seawater pH

Kentaro Tanaka, Michael Holcomb, A. Takahashi, H. Kurihara, R. Asami, R. Shinjo, Kohki Sowa, Kai Rankenburg, T. Watanabe, Malcolm Mcculloch

    Research output: Contribution to journalArticlepeer-review

    30 Citations (Scopus)

    Abstract

    © 2015, Springer-Verlag Berlin Heidelberg. The response of Acropora digitifera to ocean acidification is determined using geochemical proxy measurements of the skeletal composition of A. digitifera cultured under a range of pH levels. We show that the chemical composition (δ11B, Sr/Ca, Mg/Ca, and Ba/Ca) of the coral skeletons can provide quantitative constraints on the effects of seawater pH on the pH in the calcification fluid (pHCF) and the mechanisms controlling the incorporation of trace elements into coral aragonite. With the decline of seawater pH, the skeletal δ11B value decreased, while the Sr/Ca ratio showed an increasing trend. The relationship between Mg/Ca and Ba/Ca versus seawater pH was not significant. Inter-colony variation of δ11B was insignificant, although inter-colony variation was observed for Ba/Ca. The decreasing trend of pHCF calculated from δ11B was from ~8.5, 8.4, and 8.3 for seawater pH of ~8.1, 7.8, and 7.4, respectively. Model calculations based on Sr/Ca and pHCF suggest that upregulation of pHCF occurs via exchange of H+ with Ca2+ with kinetic effects (Rayleigh fractionation), reducing Sr/Ca relative to inorganic deposition of aragonite from seawater. We show that it is possible to constrain the overall carbonate chemistry of the calcifying fluid with estimates of the carbonate saturation of the calcifying fluid (ΩCF) being derived from skeletal Sr/Ca and pHCF (from δ11B). These estimates suggest that the aragonite saturation state of the calcifying fluid ΩCF is elevated by a factor of 5–10 relative to ambient seawater under all treatment conditions.
    Original languageEnglish
    Pages (from-to)1139-1149
    Number of pages11
    JournalCoral Reefs
    Volume34
    Issue number4
    Early online date25 Jun 2015
    DOIs
    Publication statusPublished - Dec 2015

    Fingerprint

    Dive into the research topics of 'Response of Acropora digitifera to ocean acidification: constraints from δ11B, Sr, Mg, and Ba compositions of aragonitic skeletons cultured under variable seawater pH'. Together they form a unique fingerprint.

    Cite this