Repeatability of image features extracted from FET PET in application to post-surgical glioblastoma assessment

Research output: Contribution to journalArticlepeer-review

Abstract

Positron emission tomography (PET) imaging using the amino acid tracer O-[2-(18F)fluoroethyl]-L-tyrosine (FET) has gained increased popularity within the past decade in the management of glioblastoma (GBM). Radiomics features extracted from FET PET images may be sensitive to variations when imaging at multiple time points. It is therefore necessary to assess feature robustness to test-retest imaging. Eight patients with histologically confirmed GBM that had undergone post-surgical test-retest FET PET imaging were recruited. In total, 1578 radiomic features were extracted from biological tumour volumes (BTVs) delineated using a semi-automatic contouring method. Feature repeatability was assessed using the intraclass correlation coefficient (ICC). The effect of both bin width and filter choice on feature repeatability was also investigated. 59/106 (55.7%) features from the original image and 843/1472 (57.3%) features from filtered images had an ICC ≥ 0.85. Shape and first order features were most stable. Choice of bin width showed minimal impact on features defined as stable. The Laplacian of Gaussian (LoG, σ = 5 mm) and Wavelet filters (HLL and LHL) significantly improved feature repeatability (p ≪ 0.0001, p = 0.003, p = 0.002, respectively). Correlation of textural features with tumour volume was reported for transparency. FET PET radiomic features extracted from post-surgical images of GBM patients that are robust to test-retest imaging were identified. An investigation with a larger dataset is warranted to validate the findings in this study.

Original languageEnglish
Pages (from-to)1131-1140
Number of pages10
JournalPhysical and Engineering Sciences in Medicine
Volume44
Issue number4
Early online date26 Aug 2021
DOIs
Publication statusPublished - Dec 2021

Fingerprint

Dive into the research topics of 'Repeatability of image features extracted from FET PET in application to post-surgical glioblastoma assessment'. Together they form a unique fingerprint.

Cite this