TY - JOUR
T1 - Regulation of alcoholic fermentation in coleoptiles of two rice cultivars differing in tolerance to anoxia
AU - Gibbs, J.
AU - Morrell, S.
AU - Valdez, A.
AU - Setter, T.L.
AU - Greenway, Hendrik
PY - 2000
Y1 - 2000
N2 - To investigate regulation of anaerobic carbohydrate catabolism in anoxia-tolerant plant tissue, rate of alcoholic fermentation and maximum catalytic activities of four key enzymes were assessed in coleoptiles of two rice cultivars that differ in tolerance to anoxia. The enzymes were ATP-dependent phosphofructokinase (PFK), pyrophosphate-dependent phosphofructokinase (PFP), pyruvate decarboxylase (PDC), and alcohol dehydrogenase (ADH). During anoxia, rates of coleoptile elongation and ethanol synthesis were faster in the more tolerant variety Calrose than in IR22. Calrose coleoptiles, in contrast to IR22, also showed a sustained Pasteur effect, with the estimated rate of glycolysis during anoxia being 1.4-1.7-fold faster than that of aerobic coleoptiles. In Calrose after 5 d anoxia, maximum catalytic activities of crude enzyme extracts were tin pmol substrate g(-1) fresh weight min(-1)) 170-240 for ADH, 4-6 for PDC and PFP and 0.4-0.7 for PFK. During anoxia, activity per coleoptile of all four enzymes increased 3-5.5-fold, suggesting that PFK and PFP, like PDC and ADH, are synthesised in anoxic rice coleoptiles. Enzyme activities, on a fresh weight basis, were lower in IR22 than in Calrose. In vivo activities of PDC and PFK in anoxic coleoptiles from both cultivars were calculated using in vitro activities, estimated substrate levels, cytoplasmic pH, and S-0.5 (the substrate level at which 0.5V(max) is reached, without inferring Michaelis-Menten kinetics). Data indicated that potential carbon flux through PFK, rather than through PDC, more closely approximated rates of alcoholic fermentation. That PFK is an important site of regulation was supported further for Calrose coleoptiles by a decrease in the concentration of its substrate pool (F-6-P + G-6-P) following the onset of anoxia. By contrast, in IR22, there was little evidence for control by PFK, consistent with recent evidence that suggests substrate supply limits alcoholic fermentation in this cultivar.
AB - To investigate regulation of anaerobic carbohydrate catabolism in anoxia-tolerant plant tissue, rate of alcoholic fermentation and maximum catalytic activities of four key enzymes were assessed in coleoptiles of two rice cultivars that differ in tolerance to anoxia. The enzymes were ATP-dependent phosphofructokinase (PFK), pyrophosphate-dependent phosphofructokinase (PFP), pyruvate decarboxylase (PDC), and alcohol dehydrogenase (ADH). During anoxia, rates of coleoptile elongation and ethanol synthesis were faster in the more tolerant variety Calrose than in IR22. Calrose coleoptiles, in contrast to IR22, also showed a sustained Pasteur effect, with the estimated rate of glycolysis during anoxia being 1.4-1.7-fold faster than that of aerobic coleoptiles. In Calrose after 5 d anoxia, maximum catalytic activities of crude enzyme extracts were tin pmol substrate g(-1) fresh weight min(-1)) 170-240 for ADH, 4-6 for PDC and PFP and 0.4-0.7 for PFK. During anoxia, activity per coleoptile of all four enzymes increased 3-5.5-fold, suggesting that PFK and PFP, like PDC and ADH, are synthesised in anoxic rice coleoptiles. Enzyme activities, on a fresh weight basis, were lower in IR22 than in Calrose. In vivo activities of PDC and PFK in anoxic coleoptiles from both cultivars were calculated using in vitro activities, estimated substrate levels, cytoplasmic pH, and S-0.5 (the substrate level at which 0.5V(max) is reached, without inferring Michaelis-Menten kinetics). Data indicated that potential carbon flux through PFK, rather than through PDC, more closely approximated rates of alcoholic fermentation. That PFK is an important site of regulation was supported further for Calrose coleoptiles by a decrease in the concentration of its substrate pool (F-6-P + G-6-P) following the onset of anoxia. By contrast, in IR22, there was little evidence for control by PFK, consistent with recent evidence that suggests substrate supply limits alcoholic fermentation in this cultivar.
U2 - 10.1093/jexbot/51.345.785
DO - 10.1093/jexbot/51.345.785
M3 - Article
VL - 51
SP - 785
EP - 796
JO - Journal of Experimental Botany
JF - Journal of Experimental Botany
SN - 0022-0957
IS - No. 345
ER -