Abstract
Backscatter from the metallic components in the support arm is one of the sources of inaccuracy in dosimetry with Varian amorphous silicon electronic portal imaging devices (a-Si EPIDs). In this study, the non-uniform arm backscatter is blocked by adding lead sheets between the EPID and an E-type support arm. By comparing the EPID responses on and off the arm, with and without lead and considering the extra weight on the imager, 2 mm of lead was determined as the optimum thickness for both 6 and 18 MV beam energies. The arm backscatter at the central axis with the 2 mm lead in place decreased to 0.1% and 0.2% for the largest field size of 30x30 cm(2) using 6 and 18 MV beams, from 2.3% and 1.3% without lead. Changes in the source-to-detector distance (SDD) did not affect the backscatter component more than 1%. The symmetry of the in-plane profiles improved for all field sizes for both beam energies. The addition of lead decreased the contrast-to-noise ratio and resolution by 1.3% and 0.84% for images taken in 6 MV and by 0.5% and 0.38% for those in 18 MV beams. The displacement of the EPID central pixel was measured during a 360 degrees gantry rotation with and without lead which was 1 pixel different. While the backscatter reduces with increasing lead thickness, a 2 mm lead sheet seems sufficient for acceptable dosimetry results without any major degradation to the routine performance of the imager. No increase in patient skin dose was detected.
Original language | English |
---|---|
Pages (from-to) | 6617-6632 |
Number of pages | 16 |
Journal | Physics in Medicine and Biology |
Volume | 55 |
Issue number | 22 |
DOIs | |
Publication status | Published - 21 Nov 2010 |
Externally published | Yes |